tel: +48 888 99 98 98

neodymium magnets

We offer red color magnetic Nd2Fe14B - our offer. Practically all "magnets" on our website are in stock for immediate purchase (see the list). Check out the magnet pricing for more details check the magnet price list

Magnet for fishing F300 GOLD

Where to buy strong neodymium magnet? Holders with magnets in airtight, solid steel casing are ideally suited for use in difficult climate conditions, including during snow and rain more information...

magnetic holders

Holders with magnets can be used to enhance production, underwater discoveries, or finding space rocks from gold more information...

Order is always shipped on the same day by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMGW 36x18x8 [M8] GW / N38 - magnetic holder internal thread

magnetic holder internal thread

Catalog no 180319

GTIN: 5906301813750

5

Diameter Ø [±0,1 mm]

36 mm

Height [±0,1 mm]

18 mm

Height [±0,1 mm]

8 mm

Weight

52 g

Load capacity

40 kg / 392.27 N

23.99 with VAT / pcs + price for transport

19.50 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
19.50 ZŁ
23.99 ZŁ
price from 20 pcs
18.33 ZŁ
22.55 ZŁ
price from 80 pcs
17.16 ZŁ
21.11 ZŁ

Not sure what to buy?

Contact us by phone +48 22 499 98 98 alternatively drop us a message via contact form the contact page.
Weight as well as structure of magnets can be reviewed on our our magnetic calculator.

Orders submitted before 14:00 will be dispatched today!

UMGW 36x18x8 [M8] GW / N38 - magnetic holder internal thread

Specification/characteristics UMGW 36x18x8 [M8] GW / N38 - magnetic holder internal thread
properties
values
Cat. no.
180319
GTIN
5906301813750
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
36 mm [±0,1 mm]
Height
18 mm [±0,1 mm]
Height
8 mm [±0,1 mm]
Weight
52 g [±0,1 mm]
Load capacity ~ ?
40 kg / 392.27 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Magnetic holders with internal thread are universal accessories, used in manufacturing as well as everyday applications, e.g. in construction. They consist of a neodymium magnet, typically neodymium, embedded within a steel shell, covered with Zn layer to prevent rusting. The internal thread, ranging from M3 to M10, enables mounting screws, which facilitates assembly of different components, such as signs, tools, or lights. They work via a powerful magnetic zone, which concentrates in the contact area, providing load capacity from 1.3 kg to 60 kg, depending on mount size. They are especially useful in the automotive industry, for example, for attaching body panels, as well as in marketing, for hanging banners. Some models have a rubber coating, e.g. in black or yellow, which protects surfaces from scratches and increases resistance to dampness. Benefits include high durability, ease of installation thanks to the thread, and the ability to transport heavy ferromagnetic objects. However, the holding force relies on surface thickness, material used, and the gap between holder and object. It’s important to avoid impacts, since neodymium magnets are fragile, and over-tightening the bolt can cause damage. Moreover, a magnetic zone may interfere with electronics, like phones or data carriers, so holders should be kept away from such equipment. It is recommended to choose holders from reputable manufacturers, to ensure high quality and safe use during operation.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their magnetic efficiency, neodymium magnets provide the following advantages:

  • They have unchanged lifting capacity, and over more than 10 years their attraction force decreases symbolically – ~1% (according to theory),
  • They are extremely resistant to demagnetization caused by external magnetic fields,
  • By applying a bright layer of silver, the element gains a modern look,
  • The outer field strength of the magnet shows advanced magnetic properties,
  • These magnets tolerate elevated temperatures, often exceeding 230°C, when properly designed (in relation to form),
  • With the option for fine forming and targeted design, these magnets can be produced in numerous shapes and sizes, greatly improving engineering flexibility,
  • Significant impact in cutting-edge sectors – they serve a purpose in HDDs, rotating machines, healthcare devices as well as technologically developed systems,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to mechanical hits, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from fracture and reinforces its overall strength,
  • High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a wet environment, especially when used outside, we recommend using waterproof magnets, such as those made of polymer,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing complex structures directly in the magnet,
  • Potential hazard linked to microscopic shards may arise, especially if swallowed, which is notable in the context of child safety. Additionally, tiny components from these devices might disrupt scanning after being swallowed,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Maximum lifting force for a neodymium magnet – what contributes to it?

The given lifting capacity of the magnet represents the maximum lifting force, assessed under optimal conditions, namely:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a refined outer layer
  • with zero air gap
  • in a perpendicular direction of force
  • at room temperature

Practical lifting capacity: influencing factors

In practice, the holding capacity of a magnet is affected by the following aspects, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was measured on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, whereas under attempts to slide the magnet the holding force is lower. Moreover, even a slight gap {between} the magnet and the plate lowers the lifting capacity.

Be Cautious with Neodymium Magnets

Avoid bringing neodymium magnets close to a phone or GPS.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Magnets made of neodymium are highly susceptible to damage, resulting in shattering.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets can become demagnetized at high temperatures.

Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets attract each other within a distance of several to around 10 cm from each other. Remember not to insert fingers between magnets or alternatively in their path when attract. Magnets, depending on their size, can even cut off a finger or alternatively there can be a significant pressure or even a fracture.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Keep neodymium magnets away from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

 Maintain neodymium magnets far from youngest children.

Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets are the strongest magnets ever invented. Their power can surprise you.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Safety rules!

To illustrate why neodymium magnets are so dangerous, read the article - How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98