tel: +48 888 99 98 98

neodymium magnets

We offer blue color magnets Nd2Fe14B - our store's offer. Practically all "neodymium magnets" on our website are in stock for immediate delivery (see the list). See the magnet pricing for more details check the magnet price list

Magnet for water searching F200 GOLD

Where to purchase strong neodymium magnet? Holders with magnets in airtight, solid enclosure are ideally suited for use in challenging weather, including in the rain and snow more...

magnets with holders

Holders with magnets can be applied to facilitate production, underwater exploration, or finding space rocks from gold more...

Order is shipped on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o.
Product available Ships tomorrow

UMGW 36x18x8 [M8] GW / N38 - magnetic holder internal thread

magnetic holder internal thread

Catalog no 180319

GTIN: 5906301813750

5

Diameter Ø [±0,1 mm]

36 mm

Height [±0,1 mm]

18 mm

Height [±0,1 mm]

8 mm

Weight

52 g

Load capacity

40 kg / 392.27 N

23.99 with VAT / pcs + price for transport

19.50 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
19.50 ZŁ
23.99 ZŁ
price from 20 pcs
18.33 ZŁ
22.55 ZŁ
price from 80 pcs
17.16 ZŁ
21.11 ZŁ

Can't decide what to choose?

Pick up the phone and ask +48 22 499 98 98 otherwise send us a note through form the contact section.
Strength and appearance of magnetic components can be tested with our online calculation tool.

Order by 14:00 and we’ll ship today!

UMGW 36x18x8 [M8] GW / N38 - magnetic holder internal thread

Specification/characteristics UMGW 36x18x8 [M8] GW / N38 - magnetic holder internal thread
properties
values
Cat. no.
180319
GTIN
5906301813750
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
36 mm [±0,1 mm]
Height
18 mm [±0,1 mm]
Height
8 mm [±0,1 mm]
Weight
52 g [±0,1 mm]
Load capacity ~ ?
40 kg / 392.27 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The steel housing screens the magnetic field and directs all its power to one side. The metal cover secures the magnet against mechanical damage. The threaded hole allows quick mounting of a hook, handle, or screw.
A too-long bolt can push out or damage the magnet glued into the bottom of the cup. Neodymium magnets are brittle, and direct pressure from the bolt can cause them to crack. It is worth securing the thread with glue if the connection is to be permanent.
They are indispensable in building exhibition stands and shop displays (POS). They enable creating detachable connections. Ideal for mounting lighting on machines.
Standard coating protects against moisture in indoor conditions. In rain and frost, the coating may degrade over time. The whole is well protected for workshop and industrial applications.
Nominal lifting capacity (for this model approx. 40 kg) is measured under ideal conditions: perpendicular detachment from thick steel (10mm+). With thin sheets, uneven surfaces, or paint, the force will be much lower. We always recommend choosing a magnet with a reserve of force.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their magnetic efficiency, neodymium magnets provide the following advantages:

  • Their strength is maintained, and after around 10 years, it drops only by ~1% (according to research),
  • They show exceptional resistance to demagnetization from outside magnetic sources,
  • Thanks to the polished finish and gold coating, they have an visually attractive appearance,
  • The outer field strength of the magnet shows advanced magnetic properties,
  • Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • The ability for accurate shaping and adjustment to custom needs – neodymium magnets can be manufactured in many forms and dimensions, which enhances their versatility in applications,
  • Important function in new technology industries – they are used in computer drives, electric motors, medical equipment and sophisticated instruments,
  • Thanks to their power density, small magnets offer high magnetic performance, with minimal size,

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a heavy impact. If the magnets are exposed to external force, it is advisable to use in a metal holder. The steel housing, in the form of a holder, protects the magnet from damage and increases its overall resistance,
  • They lose field intensity at high temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is common to use sealed magnets made of synthetic coating for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is risky,
  • Health risk from tiny pieces may arise, if ingested accidentally, which is crucial in the context of child safety. Additionally, small elements from these assemblies may hinder health screening if inside the body,
  • In cases of mass production, neodymium magnet cost may not be economically viable,

Highest magnetic holding forcewhat affects it?

The given pulling force of the magnet means the maximum force, determined in the best circumstances, namely:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • with a thickness of minimum 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • under perpendicular detachment force
  • under standard ambient temperature

Lifting capacity in real conditions – factors

In practice, the holding capacity of a magnet is conditioned by these factors, in descending order of importance:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was tested on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, however under shearing force the holding force is lower. In addition, even a small distance {between} the magnet and the plate reduces the holding force.

Exercise Caution with Neodymium Magnets

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their power can surprise you.

Familiarize yourself with our information to properly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets attract each other within a distance of several to around 10 cm from each other. Remember not to place fingers between magnets or in their path when attract. Depending on how huge the neodymium magnets are, they can lead to a cut or alternatively a fracture.

Magnets made of neodymium are highly susceptible to damage, leading to their cracking.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Neodymium magnets can demagnetize at high temperatures.

In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

 Keep neodymium magnets away from children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Pay attention!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98