tel: +48 888 99 98 98

neodymium magnets

We provide blue color magnetic Nd2Fe14B - our offer. Practically all magnesy neodymowe in our store are in stock for immediate delivery (see the list). Check out the magnet price list for more details check the magnet price list

Magnet for fishing F200 GOLD

Where to purchase powerful magnet? Holders with magnets in airtight and durable steel casing are ideally suited for use in difficult, demanding climate conditions, including during rain and snow check...

magnetic holders

Holders with magnets can be used to enhance manufacturing, underwater exploration, or searching for meteorites made of metal more...

Order always shipped on the day of purchase by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMGW 36x18x8 [M8] GW / N38 - magnetic holder internal thread

magnetic holder internal thread

Catalog no 180319

GTIN: 5906301813750

5

Diameter Ø [±0,1 mm]

36 mm

Height [±0,1 mm]

18 mm

Height [±0,1 mm]

8 mm

Weight

52 g

Load capacity

40 kg / 392.27 N

23.99 with VAT / pcs + price for transport

19.50 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
19.50 ZŁ
23.99 ZŁ
price from 20 pcs
18.33 ZŁ
22.55 ZŁ
price from 80 pcs
17.16 ZŁ
21.11 ZŁ

Want to negotiate?

Contact us by phone +48 22 499 98 98 otherwise contact us through our online form our website.
Force and structure of a neodymium magnet can be estimated with our force calculator.

Orders placed before 14:00 will be shipped the same business day.

UMGW 36x18x8 [M8] GW / N38 - magnetic holder internal thread

Specification/characteristics UMGW 36x18x8 [M8] GW / N38 - magnetic holder internal thread
properties
values
Cat. no.
180319
GTIN
5906301813750
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
36 mm [±0,1 mm]
Height
18 mm [±0,1 mm]
Height
8 mm [±0,1 mm]
Weight
52 g [±0,1 mm]
Load capacity ~ ?
40 kg / 392.27 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Mounting bases with magnets featuring internal thread are universal tools, used in industrial and household applications, such as engineering. They consist of a neodymium magnet, typically neodymium, embedded within a metal shell, covered with Zn layer to prevent rusting. The internal thread, available in sizes from M4 to M8, allows mounting bolts, which facilitates assembly of various items, such as nameplates, tools, or lights. They work thanks to a strong magnetic field, which concentrates at the mounting point, ensuring load capacity ranging from one to sixty kilograms, depending on mount size. They are especially useful in vehicle manufacturing, for example, for securing body panels, as well as in marketing, for hanging banners. Some models have a rubber coating, e.g. in black or yellow, which protects surfaces from scratches and improves moisture resistance. Advantages cover high durability, simple mounting due to the internal threading, and the ability to transport heavy ferromagnetic objects. Still, the holding force relies on surface thickness, material used, and the gap between holder and object. It’s important to avoid impacts, as NdFeB magnets are brittle, and over-tightening the bolt can cause damage. Moreover, a magnetic zone may interfere with electronics, like phones or data carriers, therefore mounts should be stored away from those devices. It is recommended to choose holders from reputable manufacturers, to guarantee reliability and safety during use.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their long-term stability, neodymium magnets provide the following advantages:

  • They do not lose their even over approximately 10 years – the decrease of strength is only ~1% (theoretically),
  • They are extremely resistant to demagnetization caused by external magnetic fields,
  • In other words, due to the metallic nickel coating, the magnet obtains an professional appearance,
  • They exhibit elevated levels of magnetic induction near the outer area of the magnet,
  • With the right combination of compounds, they reach increased thermal stability, enabling operation at or above 230°C (depending on the form),
  • Thanks to the flexibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in various configurations, which broadens their usage potential,
  • Significant impact in cutting-edge sectors – they are used in hard drives, electric motors, diagnostic apparatus along with high-tech tools,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, with minimal size,

Disadvantages of magnetic elements:

  • They are prone to breaking when subjected to a heavy impact. If the magnets are exposed to external force, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture and reinforces its overall strength,
  • Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of synthetic coating for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing fine shapes directly in the magnet,
  • Health risk linked to microscopic shards may arise, when consumed by mistake, which is crucial in the health of young users. It should also be noted that small elements from these magnets can complicate medical imaging after being swallowed,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Breakaway strength of the magnet in ideal conditionswhat it depends on?

The given holding capacity of the magnet represents the highest holding force, calculated in ideal conditions, namely:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • with zero air gap
  • in a perpendicular direction of force
  • in normal thermal conditions

What influences lifting capacity in practice

Practical lifting force is determined by elements, by priority:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, however under parallel forces the holding force is lower. Moreover, even a small distance {between} the magnet’s surface and the plate decreases the load capacity.

Safety Guidelines with Neodymium Magnets

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Neodymium magnets generate strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their strength can shock you.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Magnets attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a serious injury may occur. Depending on how large the neodymium magnets are, they can lead to a cut or alternatively a fracture.

Do not bring neodymium magnets close to GPS and smartphones.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

  Do not give neodymium magnets to children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnetic are highly susceptible to damage, leading to shattering.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets can become demagnetized at high temperatures.

In certain circumstances, Neodymium magnets may experience demagnetization when subjected to high temperatures.

Pay attention!

So you are aware of why neodymium magnets are so dangerous, read the article titled How very dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98