SMZR 25x100 / N52 - magnetic separator with handle
magnetic separator with handle
Catalog no 140232
GTIN: 5906301813408
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
100 mm
Weight
0.01 g
307.50 ZŁ with VAT / pcs + price for transport
250.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need help making a decision?
Give us a call
+48 888 99 98 98
if you prefer send us a note via
inquiry form
the contact form page.
Lifting power and form of magnets can be reviewed using our
force calculator.
Orders submitted before 14:00 will be dispatched today!
SMZR 25x100 / N52 - magnetic separator with handle
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their strong magnetic energy, neodymium magnets have these key benefits:
- They virtually do not lose strength, because even after 10 years, the decline in efficiency is only ~1% (based on calculations),
- Their ability to resist magnetic interference from external fields is notable,
- The use of a decorative gold surface provides a eye-catching finish,
- They have exceptional magnetic induction on the surface of the magnet,
- Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
- With the option for tailored forming and precise design, these magnets can be produced in various shapes and sizes, greatly improving engineering flexibility,
- Key role in cutting-edge sectors – they serve a purpose in data storage devices, electromechanical systems, clinical machines along with technologically developed systems,
- Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in tiny dimensions, which makes them useful in small systems
Disadvantages of neodymium magnets:
- They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to external force, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from damage and strengthens its overall robustness,
- High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a wet environment – during outdoor use, we recommend using encapsulated magnets, such as those made of rubber,
- Limited ability to create precision features in the magnet – the use of a magnetic holder is recommended,
- Possible threat due to small fragments may arise, in case of ingestion, which is crucial in the health of young users. Moreover, minuscule fragments from these magnets might disrupt scanning when ingested,
- High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which can restrict large-scale applications
Best holding force of the magnet in ideal parameters – what affects it?
The given lifting capacity of the magnet represents the maximum lifting force, determined in the best circumstances, that is:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a refined outer layer
- with no separation
- under perpendicular detachment force
- under standard ambient temperature
Impact of factors on magnetic holding capacity in practice
The lifting capacity of a magnet depends on in practice the following factors, from primary to secondary:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was carried out on a smooth plate of optimal thickness, under perpendicular forces, however under shearing force the holding force is lower. Additionally, even a small distance {between} the magnet and the plate reduces the lifting capacity.
Safety Precautions
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
It is important to maintain neodymium magnets out of reach from children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Never bring neodymium magnets close to a phone and GPS.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
In the case of placing a finger in the path of a neodymium magnet, in such a case, a cut or even a fracture may occur.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are the strongest, most remarkable magnets on the planet, and the surprising force between them can surprise you at first.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Magnets made of neodymium are fragile as well as can easily break and get damaged.
Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.
Keep neodymium magnets away from TV, wallet, and computer HDD.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.
Neodymium magnets can demagnetize at high temperatures.
In certain circumstances, Neodymium magnets may experience demagnetization when subjected to high temperatures.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Warning!
In order to show why neodymium magnets are so dangerous, see the article - How dangerous are strong neodymium magnets?.
