tel: +48 888 99 98 98

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our store's offer. All magnesy on our website are in stock for immediate purchase (see the list). Check out the magnet price list for more details check the magnet price list

Magnet for treasure hunters F300 GOLD

Where to purchase strong neodymium magnet? Magnetic holders in solid and airtight steel casing are perfect for use in challenging weather, including snow and rain more information...

magnetic holders

Holders with magnets can be used to improve production processes, exploring underwater areas, or locating space rocks from gold read...

We promise to ship your order if the order is placed before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SMZR 25x100 / N52 - magnetic separator with handle

magnetic separator with handle

Catalog no 140232

GTIN: 5906301813408

5

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

100 mm

Weight

0.01 g

307.50 with VAT / pcs + price for transport

250.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
250.00 ZŁ
307.50 ZŁ
price from 5 pcs
235.00 ZŁ
289.05 ZŁ
price from 10 pcs
220.00 ZŁ
270.60 ZŁ

Not sure which magnet to buy?

Call us +48 888 99 98 98 or let us know via request form the contact section.
Force as well as shape of magnets can be checked using our force calculator.

Same-day shipping for orders placed before 14:00.

SMZR 25x100 / N52 - magnetic separator with handle

Specification/characteristics SMZR 25x100 / N52 - magnetic separator with handle
properties
values
Cat. no.
140232
GTIN
5906301813408
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
100 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Furthermore, it's necessary to follow safety precautions when operating strong magnetic elements, to prevent equipment damage or injuries.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their high retention, neodymium magnets are valued for these benefits:

  • Their power is maintained, and after approximately 10 years, it drops only by ~1% (theoretically),
  • Their ability to resist magnetic interference from external fields is notable,
  • Thanks to the shiny finish and gold coating, they have an elegant appearance,
  • The outer field strength of the magnet shows elevated magnetic properties,
  • Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
  • Thanks to the freedom in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in various configurations, which broadens their application range,
  • Significant impact in cutting-edge sectors – they find application in hard drives, electric motors, clinical machines along with other advanced devices,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of magnetic elements:

  • They can break when subjected to a strong impact. If the magnets are exposed to physical collisions, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks while also enhances its overall strength,
  • Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a wet environment. If exposed to rain, we recommend using waterproof magnets, such as those made of polymer,
  • The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is difficult,
  • Potential hazard linked to microscopic shards may arise, especially if swallowed, which is important in the protection of children. Moreover, tiny components from these assemblies might interfere with diagnostics when ingested,
  • In cases of mass production, neodymium magnet cost may be a barrier,

Magnetic strength at its maximum – what it depends on?

The given holding capacity of the magnet represents the highest holding force, determined under optimal conditions, that is:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • with no separation
  • under perpendicular detachment force
  • at room temperature

Impact of factors on magnetic holding capacity in practice

In practice, the holding capacity of a magnet is affected by these factors, from crucial to less important:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was tested on the plate surface of 20 mm thickness, when a perpendicular force was applied, whereas under shearing force the load capacity is reduced by as much as 5 times. Additionally, even a slight gap {between} the magnet and the plate decreases the load capacity.

Be Cautious with Neodymium Magnets

Neodymium magnets are fragile as well as can easily break as well as get damaged.

Neodymium magnets are fragile as well as will crack if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets are the most powerful magnets ever created, and their power can surprise you.

Familiarize yourself with our information to properly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Keep neodymium magnets away from TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

Magnets attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a serious injury may occur. Magnets, depending on their size, are able even cut off a finger or there can be a serious pressure or a fracture.

  Magnets are not toys, youngest should not play with them.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can demagnetize at high temperatures.

Whilst Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Exercise caution!

So that know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous very strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98