tel: +48 888 99 98 98

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our proposal. All magnesy on our website are available for immediate delivery (check the list). See the magnet price list for more details check the magnet price list

Magnet for water searching F400 GOLD

Where to purchase very strong neodymium magnet? Magnet holders in airtight, solid enclosure are excellent for use in challenging weather conditions, including during snow and rain more...

magnetic holders

Magnetic holders can be applied to enhance production, underwater discoveries, or searching for meteorites made of ore more information...

Shipping is shipped if the order is placed by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SMZR 25x100 / N52 - magnetic separator with handle

magnetic separator with handle

Catalog no 140232

GTIN: 5906301813408

5

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

100 mm

Weight

0.01 g

307.50 with VAT / pcs + price for transport

250.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
250.00 ZŁ
307.50 ZŁ
price from 5 pcs
235.00 ZŁ
289.05 ZŁ
price from 10 pcs
220.00 ZŁ
270.60 ZŁ

Need advice?

Give us a call +48 888 99 98 98 alternatively drop us a message through form through our site.
Parameters along with form of a magnet can be checked using our power calculator.

Orders placed before 14:00 will be shipped the same business day.

SMZR 25x100 / N52 - magnetic separator with handle

Specification/characteristics SMZR 25x100 / N52 - magnetic separator with handle
properties
values
Cat. no.
140232
GTIN
5906301813408
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
100 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
coercivity bHc ?
860-995
kA/m
coercivity bHc ?
10.8-12.5
kOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The grip, typically comfortable, enables easy maneuvering of the separator over the surface, which significantly enhances the efficiency of the task. Their key advantages are portability, ease of use and strong effectiveness at extracting fine ferrous fragments, such as chips or dust.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their superior magnetism, neodymium magnets have these key benefits:

  • They have unchanged lifting capacity, and over more than 10 years their performance decreases symbolically – ~1% (in testing),
  • Their ability to resist magnetic interference from external fields is impressive,
  • By applying a reflective layer of silver, the element gains a modern look,
  • They have very high magnetic induction on the surface of the magnet,
  • These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to build),
  • With the option for fine forming and precise design, these magnets can be produced in numerous shapes and sizes, greatly improving application potential,
  • Important function in new technology industries – they serve a purpose in hard drives, rotating machines, healthcare devices and high-tech tools,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, in miniature format,

Disadvantages of magnetic elements:

  • They can break when subjected to a powerful impact. If the magnets are exposed to shocks, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from fracture and additionally enhances its overall durability,
  • They lose strength at extreme temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to wet conditions can rust. Therefore, for outdoor applications, we suggest waterproof types made of coated materials,
  • The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is difficult,
  • Potential hazard linked to microscopic shards may arise, in case of ingestion, which is important in the protection of children. It should also be noted that small elements from these products might complicate medical imaging when ingested,
  • In cases of mass production, neodymium magnet cost may be a barrier,

Breakaway strength of the magnet in ideal conditionswhat contributes to it?

The given lifting capacity of the magnet corresponds to the maximum lifting force, determined in the best circumstances, specifically:

  • with mild steel, serving as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a polished side
  • in conditions of no clearance
  • with vertical force applied
  • in normal thermal conditions

Lifting capacity in real conditions – factors

Practical lifting force is dependent on elements, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was measured on the plate surface of 20 mm thickness, when a perpendicular force was applied, in contrast under attempts to slide the magnet the load capacity is reduced by as much as 5 times. Moreover, even a slight gap {between} the magnet and the plate reduces the load capacity.

Safety Precautions

Keep neodymium magnets away from GPS and smartphones.

Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can become demagnetized at high temperatures.

Despite the fact that magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Neodymium magnets are highly delicate, they easily crack and can crumble.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

 It is essential to maintain neodymium magnets out of reach from youngest children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their power can surprise you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

In the situation of placing a finger in the path of a neodymium magnet, in such a case, a cut or a fracture may occur.

Be careful!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98