tel: +48 888 99 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our offer. All "magnets" on our website are in stock for immediate purchase (see the list). See the magnet price list for more details see the magnet price list

Magnets for water searching F200 GOLD

Where to buy strong neodymium magnet? Magnet holders in airtight, solid steel enclosure are perfect for use in challenging weather conditions, including during snow and rain see more...

magnetic holders

Magnetic holders can be applied to enhance manufacturing, underwater discoveries, or locating space rocks made of ore more information...

Shipping always shipped on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 25x12 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010502

5

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

12 mm

Weight

44.18 g

Magnetization Direction

↑ axial

Magnetic Induction

429.18 mT

Coating

[NiCuNi] nickel

10.46 with VAT / pcs + price for transport

8.50 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
8.50 ZŁ
10.46 ZŁ
price from 600 pcs
7.99 ZŁ
9.83 ZŁ
price from 2200 pcs
7.48 ZŁ
9.20 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MW 25x12 / N38 - cylindrical magnet

Specification/characteristics MW 25x12 / N38 - cylindrical magnet
properties
values
Cat. no.
010502
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
12 mm [±0,1 mm]
Weight
44.18 g [±0,1 mm]
Magnetization Direction
↑ axial
Magnetic Induction ~ ?
429.18 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets min. MW 25x12 / N38 are magnets created of neodymium in a cylinder form. They are known for their extremely powerful magnetic properties, which exceed ordinary iron magnets. Because of their strength, they are often used in devices that need powerful holding. The standard temperature resistance of such magnets is 80 degrees C, but for cylindrical magnets, this temperature rises with their height. Moreover, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to enhance their resistance to corrosion. The cylindrical shape is as well very popular among neodymium magnets. The magnet named MW 25x12 / N38 with a magnetic force 0 kg has a weight of only 44.18 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, represent the strongest known material for magnet production. Their production process requires a specialized approach and includes sintering special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in many applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a thin layer of nickel to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, as well as in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
Regarding the purchase of cylindrical neodymium magnets, several enterprises offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address can be found directly in the contact tab. It is recommended to visit the site for the latest information and offers, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are very useful in many applications, they can also pose certain dangers. Because of their strong magnetic power, they can attract metallic objects with great force, which can lead to crushing skin as well as other surfaces, especially be careful with fingers. Do not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Moreover, neodymium magnets are susceptible to corrosion in humid environments, thus they are coated with a thin e.g., nickel layer. Generally, although they are very useful, they should be handled carefully.
Neodymium magnets, with the formula Nd2Fe14B, are at this time the very strong magnets on the market. They are produced through a complicated sintering process, which involves fusing specific alloys of neodymium with additional metals and then forming and heat treating. Their amazing magnetic strength comes from the exceptional production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often coated with coatings, such as silver, to preserve them from environmental factors and extend their lifespan. High temperatures exceeding 130°C can result in a loss of their magnetic properties, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic strength.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from immense strength, neodymium magnets have the following advantages:

  • They do not lose strength over time - after 10 years, their strength decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic sources,
  • In other words, thanks to the shiny nickel, gold, or silver finish, the element gains an aesthetic appearance,
  • They exhibit extremely high magnetic induction on the surface of the magnet,
  • By using an appropriate combination of materials, they can achieve significant thermal resistance, allowing them to operate at temperatures up to 230°C and above...
  • The ability for precise shaping and customization to specific needs – neodymium magnets can be produced in various forms and dimensions, which expands the range of their possible uses.
  • Wide application in modern technologies – are utilized in computer drives, electric motors, medical equipment and very highly developed apparatuses.

Disadvantages of neodymium magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • They lose strength at high temperatures. Most neodymium magnets experience permanent loss of strength when heated above 80°C (depending on the form and height). However, we also offer special magnets with high temperature resistance, up to 230°C,
  • Due to their susceptibility to corrosion in a humid environment, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
  • Health risk associated with microscopic parts of magnets pose a threat, if swallowed, which is crucial in the aspect of protecting young children. Additionally, miniscule components of these devices have the potential to complicate diagnosis when they are in the body.

Safety Precautions

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Never bring neodymium magnets close to a phone and GPS.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Neodymium magnets jump and also touch each other mutually within a radius of several to almost 10 cm from each other.

  Do not give neodymium magnets to children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Neodymium magnets are known for being fragile, which can cause them to crumble.

Neodymium magnets are delicate as well as will break if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can shock you.

Familiarize yourself with our information to properly handle these magnets and avoid significant injuries to your body and prevent damage to the magnets.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Safety rules!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98