MW 25x12 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010502
GTIN/EAN: 5906301814986
Diameter Ø
25 mm [±0,1 mm]
Height
12 mm [±0,1 mm]
Weight
44.18 g
Magnetization Direction
↑ axial
Load capacity
19.60 kg / 192.25 N
Magnetic Induction
429.18 mT / 4292 Gs
Coating
[NiCuNi] Nickel
16.64 ZŁ with VAT / pcs + price for transport
13.53 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us now
+48 22 499 98 98
if you prefer drop us a message via
contact form
the contact page.
Weight along with structure of a magnet can be checked with our
online calculation tool.
Same-day shipping for orders placed before 14:00.
Technical specification of the product - MW 25x12 / N38 - cylindrical magnet
Specification / characteristics - MW 25x12 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010502 |
| GTIN/EAN | 5906301814986 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 25 mm [±0,1 mm] |
| Height | 12 mm [±0,1 mm] |
| Weight | 44.18 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 19.60 kg / 192.25 N |
| Magnetic Induction ~ ? | 429.18 mT / 4292 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering analysis of the product - report
Presented information represent the outcome of a mathematical calculation. Values are based on models for the class Nd2Fe14B. Actual conditions may differ from theoretical values. Use these calculations as a supplementary guide during assembly planning.
Table 1: Static force (pull vs distance) - characteristics
MW 25x12 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
4291 Gs
429.1 mT
|
19.60 kg / 43.21 lbs
19600.0 g / 192.3 N
|
dangerous! |
| 1 mm |
3975 Gs
397.5 mT
|
16.82 kg / 37.08 lbs
16820.5 g / 165.0 N
|
dangerous! |
| 2 mm |
3645 Gs
364.5 mT
|
14.15 kg / 31.19 lbs
14147.5 g / 138.8 N
|
dangerous! |
| 3 mm |
3316 Gs
331.6 mT
|
11.71 kg / 25.81 lbs
11707.5 g / 114.9 N
|
dangerous! |
| 5 mm |
2692 Gs
269.2 mT
|
7.72 kg / 17.02 lbs
7718.0 g / 75.7 N
|
medium risk |
| 10 mm |
1518 Gs
151.8 mT
|
2.45 kg / 5.41 lbs
2451.8 g / 24.1 N
|
medium risk |
| 15 mm |
863 Gs
86.3 mT
|
0.79 kg / 1.75 lbs
793.5 g / 7.8 N
|
safe |
| 20 mm |
517 Gs
51.7 mT
|
0.29 kg / 0.63 lbs
285.1 g / 2.8 N
|
safe |
| 30 mm |
219 Gs
21.9 mT
|
0.05 kg / 0.11 lbs
51.2 g / 0.5 N
|
safe |
| 50 mm |
63 Gs
6.3 mT
|
0.00 kg / 0.01 lbs
4.2 g / 0.0 N
|
safe |
Table 2: Sliding force (wall)
MW 25x12 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.92 kg / 8.64 lbs
3920.0 g / 38.5 N
|
| 1 mm | Stal (~0.2) |
3.36 kg / 7.42 lbs
3364.0 g / 33.0 N
|
| 2 mm | Stal (~0.2) |
2.83 kg / 6.24 lbs
2830.0 g / 27.8 N
|
| 3 mm | Stal (~0.2) |
2.34 kg / 5.16 lbs
2342.0 g / 23.0 N
|
| 5 mm | Stal (~0.2) |
1.54 kg / 3.40 lbs
1544.0 g / 15.1 N
|
| 10 mm | Stal (~0.2) |
0.49 kg / 1.08 lbs
490.0 g / 4.8 N
|
| 15 mm | Stal (~0.2) |
0.16 kg / 0.35 lbs
158.0 g / 1.5 N
|
| 20 mm | Stal (~0.2) |
0.06 kg / 0.13 lbs
58.0 g / 0.6 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (shearing) - behavior on slippery surfaces
MW 25x12 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
5.88 kg / 12.96 lbs
5880.0 g / 57.7 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.92 kg / 8.64 lbs
3920.0 g / 38.5 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
1.96 kg / 4.32 lbs
1960.0 g / 19.2 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
9.80 kg / 21.61 lbs
9800.0 g / 96.1 N
|
Table 4: Steel thickness (saturation) - power losses
MW 25x12 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.98 kg / 2.16 lbs
980.0 g / 9.6 N
|
| 1 mm |
|
2.45 kg / 5.40 lbs
2450.0 g / 24.0 N
|
| 2 mm |
|
4.90 kg / 10.80 lbs
4900.0 g / 48.1 N
|
| 3 mm |
|
7.35 kg / 16.20 lbs
7350.0 g / 72.1 N
|
| 5 mm |
|
12.25 kg / 27.01 lbs
12250.0 g / 120.2 N
|
| 10 mm |
|
19.60 kg / 43.21 lbs
19600.0 g / 192.3 N
|
| 11 mm |
|
19.60 kg / 43.21 lbs
19600.0 g / 192.3 N
|
| 12 mm |
|
19.60 kg / 43.21 lbs
19600.0 g / 192.3 N
|
Table 5: Thermal resistance (stability) - resistance threshold
MW 25x12 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
19.60 kg / 43.21 lbs
19600.0 g / 192.3 N
|
OK |
| 40 °C | -2.2% |
19.17 kg / 42.26 lbs
19168.8 g / 188.0 N
|
OK |
| 60 °C | -4.4% |
18.74 kg / 41.31 lbs
18737.6 g / 183.8 N
|
|
| 80 °C | -6.6% |
18.31 kg / 40.36 lbs
18306.4 g / 179.6 N
|
|
| 100 °C | -28.8% |
13.96 kg / 30.77 lbs
13955.2 g / 136.9 N
|
Table 6: Two magnets (attraction) - field range
MW 25x12 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
55.71 kg / 122.82 lbs
5 494 Gs
|
8.36 kg / 18.42 lbs
8357 g / 82.0 N
|
N/A |
| 1 mm |
51.78 kg / 114.14 lbs
8 273 Gs
|
7.77 kg / 17.12 lbs
7766 g / 76.2 N
|
46.60 kg / 102.73 lbs
~0 Gs
|
| 2 mm |
47.81 kg / 105.40 lbs
7 949 Gs
|
7.17 kg / 15.81 lbs
7172 g / 70.4 N
|
43.03 kg / 94.86 lbs
~0 Gs
|
| 3 mm |
43.94 kg / 96.88 lbs
7 621 Gs
|
6.59 kg / 14.53 lbs
6592 g / 64.7 N
|
39.55 kg / 87.19 lbs
~0 Gs
|
| 5 mm |
36.65 kg / 80.80 lbs
6 960 Gs
|
5.50 kg / 12.12 lbs
5497 g / 53.9 N
|
32.98 kg / 72.72 lbs
~0 Gs
|
| 10 mm |
21.94 kg / 48.36 lbs
5 385 Gs
|
3.29 kg / 7.25 lbs
3291 g / 32.3 N
|
19.74 kg / 43.53 lbs
~0 Gs
|
| 20 mm |
6.97 kg / 15.36 lbs
3 035 Gs
|
1.05 kg / 2.30 lbs
1045 g / 10.3 N
|
6.27 kg / 13.83 lbs
~0 Gs
|
| 50 mm |
0.33 kg / 0.72 lbs
657 Gs
|
0.05 kg / 0.11 lbs
49 g / 0.5 N
|
0.29 kg / 0.65 lbs
~0 Gs
|
| 60 mm |
0.15 kg / 0.32 lbs
439 Gs
|
0.02 kg / 0.05 lbs
22 g / 0.2 N
|
0.13 kg / 0.29 lbs
~0 Gs
|
| 70 mm |
0.07 kg / 0.16 lbs
306 Gs
|
0.01 kg / 0.02 lbs
11 g / 0.1 N
|
0.06 kg / 0.14 lbs
~0 Gs
|
| 80 mm |
0.04 kg / 0.08 lbs
221 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.03 kg / 0.07 lbs
~0 Gs
|
| 90 mm |
0.02 kg / 0.05 lbs
165 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 100 mm |
0.01 kg / 0.03 lbs
126 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
Table 7: Safety (HSE) (implants) - warnings
MW 25x12 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 13.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 10.0 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 8.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 6.0 cm |
| Remote | 50 Gs (5.0 mT) | 5.5 cm |
| Payment card | 400 Gs (40.0 mT) | 2.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 2.0 cm |
Table 8: Impact energy (kinetic energy) - warning
MW 25x12 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
22.84 km/h
(6.35 m/s)
|
0.89 J | |
| 30 mm |
36.85 km/h
(10.24 m/s)
|
2.31 J | |
| 50 mm |
47.51 km/h
(13.20 m/s)
|
3.85 J | |
| 100 mm |
67.17 km/h
(18.66 m/s)
|
7.69 J |
Table 9: Surface protection spec
MW 25x12 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Pc)
MW 25x12 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 21 413 Mx | 214.1 µWb |
| Pc Coefficient | 0.57 | Low (Flat) |
Table 11: Underwater work (magnet fishing)
MW 25x12 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 19.60 kg | Standard |
| Water (riverbed) |
22.44 kg
(+2.84 kg buoyancy gain)
|
+14.5% |
1. Sliding resistance
*Warning: On a vertical wall, the magnet holds merely approx. 20-30% of its max power.
2. Efficiency vs thickness
*Thin steel (e.g. 0.5mm PC case) drastically limits the holding force.
3. Heat tolerance
*For N38 material, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.57
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Environmental data
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other deals
Strengths as well as weaknesses of neodymium magnets.
Strengths
- They virtually do not lose power, because even after ten years the decline in efficiency is only ~1% (according to literature),
- They feature excellent resistance to weakening of magnetic properties as a result of opposing magnetic fields,
- Thanks to the shiny finish, the surface of nickel, gold, or silver gives an visually attractive appearance,
- Magnetic induction on the working layer of the magnet turns out to be exceptional,
- Due to their durability and thermal resistance, neodymium magnets are capable of operate (depending on the shape) even at high temperatures reaching 230°C or more...
- Thanks to versatility in forming and the capacity to adapt to unusual requirements,
- Versatile presence in advanced technology sectors – they are commonly used in computer drives, drive modules, medical equipment, and other advanced devices.
- Compactness – despite small sizes they provide effective action, making them ideal for precision applications
Disadvantages
- They are prone to damage upon too strong impacts. To avoid cracks, it is worth securing magnets using a steel holder. Such protection not only protects the magnet but also increases its resistance to damage
- Neodymium magnets demagnetize when exposed to high temperatures. After reaching 80°C, many of them experience permanent drop of power (a factor is the shape and dimensions of the magnet). We offer magnets specially adapted to work at temperatures up to 230°C marked [AH], which are very resistant to heat
- When exposed to humidity, magnets start to rust. To use them in conditions outside, it is recommended to use protective magnets, such as those in rubber or plastics, which secure oxidation and corrosion.
- Due to limitations in creating nuts and complicated forms in magnets, we recommend using a housing - magnetic mechanism.
- Health risk resulting from small fragments of magnets can be dangerous, if swallowed, which gains importance in the context of child health protection. Furthermore, tiny parts of these products can disrupt the diagnostic process medical when they are in the body.
- With budget limitations the cost of neodymium magnets is economically unviable,
Holding force characteristics
Maximum holding power of the magnet – what contributes to it?
- with the application of a sheet made of low-carbon steel, guaranteeing full magnetic saturation
- possessing a thickness of at least 10 mm to avoid saturation
- characterized by even structure
- with total lack of distance (no coatings)
- for force acting at a right angle (in the magnet axis)
- in neutral thermal conditions
Determinants of lifting force in real conditions
- Clearance – existence of foreign body (paint, dirt, air) acts as an insulator, which lowers capacity steeply (even by 50% at 0.5 mm).
- Pull-off angle – note that the magnet holds strongest perpendicularly. Under shear forces, the holding force drops significantly, often to levels of 20-30% of the nominal value.
- Element thickness – to utilize 100% power, the steel must be adequately massive. Paper-thin metal limits the attraction force (the magnet "punches through" it).
- Material composition – not every steel reacts the same. High carbon content worsen the attraction effect.
- Surface finish – full contact is obtained only on smooth steel. Any scratches and bumps reduce the real contact area, weakening the magnet.
- Temperature – temperature increase results in weakening of induction. Check the maximum operating temperature for a given model.
Holding force was checked on the plate surface of 20 mm thickness, when a perpendicular force was applied, in contrast under attempts to slide the magnet the load capacity is reduced by as much as 5 times. Additionally, even a minimal clearance between the magnet’s surface and the plate reduces the lifting capacity.
H&S for magnets
Phone sensors
A powerful magnetic field disrupts the operation of magnetometers in smartphones and navigation systems. Keep magnets close to a smartphone to avoid damaging the sensors.
No play value
Product intended for adults. Small elements pose a choking risk, leading to severe trauma. Keep out of reach of kids and pets.
Serious injuries
Mind your fingers. Two large magnets will join immediately with a force of several hundred kilograms, destroying anything in their path. Exercise extreme caution!
Pacemakers
Individuals with a ICD have to maintain an large gap from magnets. The magnetic field can disrupt the operation of the life-saving device.
Threat to electronics
Powerful magnetic fields can destroy records on payment cards, HDDs, and other magnetic media. Stay away of min. 10 cm.
Operating temperature
Do not overheat. NdFeB magnets are susceptible to temperature. If you need resistance above 80°C, inquire about special high-temperature series (H, SH, UH).
Risk of cracking
Despite the nickel coating, the material is brittle and cannot withstand shocks. Avoid impacts, as the magnet may shatter into hazardous fragments.
Skin irritation risks
It is widely known that nickel (standard magnet coating) is a potent allergen. If your skin reacts to metals, avoid direct skin contact and opt for coated magnets.
Powerful field
Exercise caution. Neodymium magnets attract from a long distance and connect with massive power, often quicker than you can react.
Dust explosion hazard
Dust produced during grinding of magnets is self-igniting. Do not drill into magnets without proper cooling and knowledge.
