CM PML-6 / N45 - magnetic gripper
magnetic gripper
Catalog no 100477
GTIN: 5906301812630
Weight
17900 g
Magnetization Direction
↑ axial
Load capacity
600 kg / 5883.99 N
1422.00 ZŁ with VAT / pcs + price for transport
1156.10 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to talk magnets?
Give us a call
+48 888 99 98 98
otherwise get in touch using
request form
the contact page.
Strength and structure of a neodymium magnet can be checked using our
magnetic calculator.
Order by 14:00 and we’ll ship today!
CM PML-6 / N45 - magnetic gripper
Magnetic properties of material N45
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their exceptional strength, neodymium magnets offer the following advantages:
- They virtually do not lose strength, because even after 10 years, the performance loss is only ~1% (according to literature),
- They are very resistant to demagnetization caused by external field interference,
- By applying a bright layer of gold, the element gains a modern look,
- They possess strong magnetic force measurable at the magnet’s surface,
- Thanks to their high temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
- With the option for fine forming and precise design, these magnets can be produced in various shapes and sizes, greatly improving engineering flexibility,
- Important function in modern technologies – they find application in HDDs, electric drives, diagnostic apparatus along with sophisticated instruments,
- Thanks to their efficiency per volume, small magnets offer high magnetic performance, while occupying minimal space,
Disadvantages of neodymium magnets:
- They are fragile when subjected to a heavy impact. If the magnets are exposed to physical collisions, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage and additionally strengthens its overall durability,
- High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Magnets exposed to damp air can degrade. Therefore, for outdoor applications, we advise waterproof types made of plastic,
- Limited ability to create complex details in the magnet – the use of a mechanical support is recommended,
- Potential hazard from tiny pieces may arise, especially if swallowed, which is significant in the protection of children. Additionally, tiny components from these magnets can disrupt scanning if inside the body,
- In cases of tight budgets, neodymium magnet cost is a challenge,
Maximum lifting capacity of the magnet – what contributes to it?
The given lifting capacity of the magnet represents the maximum lifting force, calculated in ideal conditions, specifically:
- with the use of low-carbon steel plate serving as a magnetic yoke
- of a thickness of at least 10 mm
- with a smooth surface
- in conditions of no clearance
- in a perpendicular direction of force
- under standard ambient temperature
Lifting capacity in practice – influencing factors
Practical lifting force is dependent on elements, by priority:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was checked on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, whereas under attempts to slide the magnet the lifting capacity is smaller. In addition, even a minimal clearance {between} the magnet’s surface and the plate decreases the load capacity.
Precautions
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Never bring neodymium magnets close to a phone and GPS.
Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Neodymium magnets produce strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
Magnets may crack or crumble with careless connecting to each other. Remember not to move them to each other or have them firmly in hands at a distance less than 10 cm.
Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.
Neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.
Neodymium magnets are the most powerful magnets ever invented. Their power can shock you.
Familiarize yourself with our information to properly handle these magnets and avoid significant injuries to your body and prevent damage to the magnets.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Neodymium magnets are incredibly delicate, they easily fall apart and can become damaged.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.
Safety rules!
To raise awareness of why neodymium magnets are so dangerous, see the article titled How very dangerous are powerful neodymium magnets?.
