MW 3x2 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010064
GTIN: 5906301810636
Diameter Ø [±0,1 mm]
3 mm
Height [±0,1 mm]
2 mm
Weight
0.11 g
Magnetization Direction
↑ axial
Load capacity
0.33 kg / 3.24 N
Magnetic Induction
493.99 mT
Coating
[NiCuNi] nickel
0.1476 ZŁ with VAT / pcs + price for transport
0.1200 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Looking for a better price?
Give us a call
+48 22 499 98 98
otherwise let us know using
our online form
the contact form page.
Lifting power and appearance of magnetic components can be verified with our
modular calculator.
Same-day shipping for orders placed before 14:00.
MW 3x2 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, even though neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a thin layer of gold to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.
In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often coated with thin coatings, such as silver, to preserve them from environmental factors and prolong their durability. High temperatures exceeding 130°C can cause a deterioration of their magnetic strength, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may lose their magnetic strength.
Advantages and disadvantages of neodymium magnets NdFeB.
Besides their magnetic performance, neodymium magnets are valued for these benefits:
- They do not lose their even during nearly ten years – the reduction of strength is only ~1% (according to tests),
- Their ability to resist magnetic interference from external fields is impressive,
- By applying a reflective layer of silver, the element gains a sleek look,
- Magnetic induction on the surface of these magnets is very strong,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- The ability for custom shaping or adaptation to specific needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which enhances their versatility in applications,
- Significant impact in advanced technical fields – they are utilized in HDDs, rotating machines, medical equipment as well as sophisticated instruments,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, while occupying minimal space,
Disadvantages of neodymium magnets:
- They can break when subjected to a heavy impact. If the magnets are exposed to external force, it is advisable to use in a metal holder. The steel housing, in the form of a holder, protects the magnet from damage and additionally enhances its overall strength,
- They lose power at elevated temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a moist environment. If exposed to rain, we recommend using sealed magnets, such as those made of plastic,
- Limited ability to create threads in the magnet – the use of a housing is recommended,
- Possible threat due to small fragments may arise, in case of ingestion, which is important in the protection of children. It should also be noted that miniature parts from these products might complicate medical imaging once in the system,
- Due to a complex production process, their cost is above average,
Maximum magnetic pulling force – what affects it?
The given pulling force of the magnet represents the maximum force, assessed in a perfect environment, namely:
- with the use of low-carbon steel plate serving as a magnetic yoke
- of a thickness of at least 10 mm
- with a refined outer layer
- with no separation
- with vertical force applied
- under standard ambient temperature
Key elements affecting lifting force
In practice, the holding capacity of a magnet is conditioned by these factors, from crucial to less important:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was determined by applying a smooth steel plate of optimal thickness (min. 20 mm), under vertically applied force, however under attempts to slide the magnet the lifting capacity is smaller. Moreover, even a slight gap {between} the magnet and the plate lowers the load capacity.
Notes with Neodymium Magnets
Keep neodymium magnets as far away as possible from GPS and smartphones.
Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets should not be around children.
Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
Magnets attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a major injury may occur. Magnets, depending on their size, are able even cut off a finger or alternatively there can be a serious pressure or a fracture.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets are delicate and can easily break as well as get damaged.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Keep neodymium magnets away from TV, wallet, and computer HDD.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Neodymium magnets can demagnetize at high temperatures.
Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Neodymium magnets are the strongest magnets ever invented. Their strength can surprise you.
To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Safety precautions!
So that know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous powerful neodymium magnets.