MW 3x2 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010064
GTIN/EAN: 5906301810636
Diameter Ø
3 mm [±0,1 mm]
Height
2 mm [±0,1 mm]
Weight
0.11 g
Magnetization Direction
↑ axial
Load capacity
0.30 kg / 2.99 N
Magnetic Induction
493.99 mT / 4940 Gs
Coating
[NiCuNi] Nickel
0.1476 ZŁ with VAT / pcs + price for transport
0.1200 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Pick up the phone and ask
+48 22 499 98 98
if you prefer contact us via
request form
our website.
Force and appearance of magnetic components can be calculated on our
our magnetic calculator.
Orders placed before 14:00 will be shipped the same business day.
Technical data - MW 3x2 / N38 - cylindrical magnet
Specification / characteristics - MW 3x2 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010064 |
| GTIN/EAN | 5906301810636 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 3 mm [±0,1 mm] |
| Height | 2 mm [±0,1 mm] |
| Weight | 0.11 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.30 kg / 2.99 N |
| Magnetic Induction ~ ? | 493.99 mT / 4940 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering analysis of the assembly - technical parameters
Presented information represent the outcome of a engineering analysis. Values rely on algorithms for the class Nd2Fe14B. Actual conditions might slightly differ from theoretical values. Use these calculations as a preliminary roadmap when designing systems.
Table 1: Static force (pull vs gap) - characteristics
MW 3x2 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
4928 Gs
492.8 mT
|
0.30 kg / 0.66 LBS
300.0 g / 2.9 N
|
weak grip |
| 1 mm |
2106 Gs
210.6 mT
|
0.05 kg / 0.12 LBS
54.8 g / 0.5 N
|
weak grip |
| 2 mm |
845 Gs
84.5 mT
|
0.01 kg / 0.02 LBS
8.8 g / 0.1 N
|
weak grip |
| 3 mm |
393 Gs
39.3 mT
|
0.00 kg / 0.00 LBS
1.9 g / 0.0 N
|
weak grip |
| 5 mm |
124 Gs
12.4 mT
|
0.00 kg / 0.00 LBS
0.2 g / 0.0 N
|
weak grip |
| 10 mm |
21 Gs
2.1 mT
|
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
weak grip |
| 15 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
weak grip |
| 20 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
weak grip |
| 30 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
weak grip |
| 50 mm |
0 Gs
0.0 mT
|
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
weak grip |
Table 2: Vertical load (wall)
MW 3x2 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.06 kg / 0.13 LBS
60.0 g / 0.6 N
|
| 1 mm | Stal (~0.2) |
0.01 kg / 0.02 LBS
10.0 g / 0.1 N
|
| 2 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
2.0 g / 0.0 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
Table 3: Vertical assembly (shearing) - vertical pull
MW 3x2 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.09 kg / 0.20 LBS
90.0 g / 0.9 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.06 kg / 0.13 LBS
60.0 g / 0.6 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.03 kg / 0.07 LBS
30.0 g / 0.3 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.15 kg / 0.33 LBS
150.0 g / 1.5 N
|
Table 4: Steel thickness (substrate influence) - sheet metal selection
MW 3x2 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.03 kg / 0.07 LBS
30.0 g / 0.3 N
|
| 1 mm |
|
0.08 kg / 0.17 LBS
75.0 g / 0.7 N
|
| 2 mm |
|
0.15 kg / 0.33 LBS
150.0 g / 1.5 N
|
| 3 mm |
|
0.22 kg / 0.50 LBS
225.0 g / 2.2 N
|
| 5 mm |
|
0.30 kg / 0.66 LBS
300.0 g / 2.9 N
|
| 10 mm |
|
0.30 kg / 0.66 LBS
300.0 g / 2.9 N
|
| 11 mm |
|
0.30 kg / 0.66 LBS
300.0 g / 2.9 N
|
| 12 mm |
|
0.30 kg / 0.66 LBS
300.0 g / 2.9 N
|
Table 5: Thermal resistance (stability) - power drop
MW 3x2 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.30 kg / 0.66 LBS
300.0 g / 2.9 N
|
OK |
| 40 °C | -2.2% |
0.29 kg / 0.65 LBS
293.4 g / 2.9 N
|
OK |
| 60 °C | -4.4% |
0.29 kg / 0.63 LBS
286.8 g / 2.8 N
|
OK |
| 80 °C | -6.6% |
0.28 kg / 0.62 LBS
280.2 g / 2.7 N
|
|
| 100 °C | -28.8% |
0.21 kg / 0.47 LBS
213.6 g / 2.1 N
|
Table 6: Two magnets (repulsion) - field range
MW 3x2 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Strength (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
1.06 kg / 2.33 LBS
5 766 Gs
|
0.16 kg / 0.35 LBS
159 g / 1.6 N
|
N/A |
| 1 mm |
0.49 kg / 1.08 LBS
6 712 Gs
|
0.07 kg / 0.16 LBS
74 g / 0.7 N
|
0.44 kg / 0.97 LBS
~0 Gs
|
| 2 mm |
0.19 kg / 0.43 LBS
4 213 Gs
|
0.03 kg / 0.06 LBS
29 g / 0.3 N
|
0.17 kg / 0.38 LBS
~0 Gs
|
| 3 mm |
0.08 kg / 0.17 LBS
2 629 Gs
|
0.01 kg / 0.02 LBS
11 g / 0.1 N
|
0.07 kg / 0.15 LBS
~0 Gs
|
| 5 mm |
0.01 kg / 0.03 LBS
1 131 Gs
|
0.00 kg / 0.00 LBS
2 g / 0.0 N
|
0.01 kg / 0.03 LBS
~0 Gs
|
| 10 mm |
0.00 kg / 0.00 LBS
248 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 LBS
41 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 LBS
3 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 LBS
2 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 LBS
1 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 LBS
1 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 LBS
1 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 LBS
0 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
Table 7: Hazards (electronics) - precautionary measures
MW 3x2 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 2.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 1.5 cm |
| Timepiece | 20 Gs (2.0 mT) | 1.5 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 1.0 cm |
| Car key | 50 Gs (5.0 mT) | 1.0 cm |
| Payment card | 400 Gs (40.0 mT) | 0.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Collisions (kinetic energy) - warning
MW 3x2 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
52.67 km/h
(14.63 m/s)
|
0.01 J | |
| 30 mm |
91.22 km/h
(25.34 m/s)
|
0.04 J | |
| 50 mm |
117.77 km/h
(32.71 m/s)
|
0.06 J | |
| 100 mm |
166.55 km/h
(46.26 m/s)
|
0.12 J |
Table 9: Coating parameters (durability)
MW 3x2 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Flux)
MW 3x2 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 353 Mx | 3.5 µWb |
| Pc Coefficient | 0.71 | High (Stable) |
Table 11: Underwater work (magnet fishing)
MW 3x2 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.30 kg | Standard |
| Water (riverbed) |
0.34 kg
(+0.04 kg buoyancy gain)
|
+14.5% |
1. Sliding resistance
*Caution: On a vertical surface, the magnet holds just ~20% of its max power.
2. Efficiency vs thickness
*Thin steel (e.g. computer case) severely reduces the holding force.
3. Power loss vs temp
*For N38 grade, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.71
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
View also products
Pros as well as cons of neodymium magnets.
Strengths
- They have constant strength, and over around ten years their performance decreases symbolically – ~1% (according to theory),
- They show high resistance to demagnetization induced by presence of other magnetic fields,
- In other words, due to the reflective surface of gold, the element looks attractive,
- Magnets have maximum magnetic induction on the surface,
- Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their form) at temperatures up to 230°C and above...
- Possibility of accurate shaping and optimizing to specific applications,
- Wide application in modern technologies – they find application in computer drives, motor assemblies, diagnostic systems, also complex engineering applications.
- Relatively small size with high pulling force – neodymium magnets offer strong magnetic field in compact dimensions, which makes them useful in compact constructions
Cons
- At very strong impacts they can crack, therefore we advise placing them in steel cases. A metal housing provides additional protection against damage, as well as increases the magnet's durability.
- NdFeB magnets lose power when exposed to high temperatures. After reaching 80°C, many of them experience permanent drop of power (a factor is the shape as well as dimensions of the magnet). We offer magnets specially adapted to work at temperatures up to 230°C marked [AH], which are very resistant to heat
- Due to the susceptibility of magnets to corrosion in a humid environment, we advise using waterproof magnets made of rubber, plastic or other material resistant to moisture, when using outdoors
- We recommend casing - magnetic holder, due to difficulties in producing nuts inside the magnet and complicated forms.
- Health risk to health – tiny shards of magnets are risky, if swallowed, which gains importance in the context of child safety. It is also worth noting that small components of these products are able to complicate diagnosis medical after entering the body.
- Higher cost of purchase is a significant factor to consider compared to ceramic magnets, especially in budget applications
Lifting parameters
Maximum holding power of the magnet – what contributes to it?
- using a base made of low-carbon steel, functioning as a ideal flux conductor
- with a thickness no less than 10 mm
- characterized by smoothness
- with direct contact (without paint)
- for force acting at a right angle (in the magnet axis)
- at ambient temperature approx. 20 degrees Celsius
Lifting capacity in practice – influencing factors
- Gap between magnet and steel – every millimeter of distance (caused e.g. by varnish or unevenness) significantly weakens the pulling force, often by half at just 0.5 mm.
- Force direction – declared lifting capacity refers to detachment vertically. When slipping, the magnet exhibits much less (often approx. 20-30% of nominal force).
- Element thickness – for full efficiency, the steel must be adequately massive. Paper-thin metal limits the attraction force (the magnet "punches through" it).
- Material type – ideal substrate is pure iron steel. Stainless steels may attract less.
- Surface condition – smooth surfaces ensure maximum contact, which increases force. Rough surfaces reduce efficiency.
- Operating temperature – NdFeB sinters have a sensitivity to temperature. At higher temperatures they lose power, and at low temperatures gain strength (up to a certain limit).
Lifting capacity was determined by applying a polished steel plate of suitable thickness (min. 20 mm), under perpendicular detachment force, whereas under parallel forces the load capacity is reduced by as much as 75%. In addition, even a minimal clearance between the magnet and the plate decreases the holding force.
Warnings
Sensitization to coating
Nickel alert: The Ni-Cu-Ni coating contains nickel. If an allergic reaction occurs, immediately stop handling magnets and wear gloves.
Handling rules
Handle magnets with awareness. Their immense force can surprise even experienced users. Plan your moves and respect their power.
Fragile material
Despite metallic appearance, the material is delicate and cannot withstand shocks. Do not hit, as the magnet may crumble into hazardous fragments.
Threat to navigation
GPS units and smartphones are extremely sensitive to magnetism. Close proximity with a strong magnet can permanently damage the internal compass in your phone.
No play value
Product intended for adults. Small elements can be swallowed, causing intestinal necrosis. Keep out of reach of children and animals.
Data carriers
Powerful magnetic fields can corrupt files on credit cards, HDDs, and storage devices. Stay away of at least 10 cm.
Dust explosion hazard
Drilling and cutting of neodymium magnets poses a fire hazard. Magnetic powder oxidizes rapidly with oxygen and is hard to extinguish.
Permanent damage
Regular neodymium magnets (grade N) lose magnetization when the temperature exceeds 80°C. The loss of strength is permanent.
Hand protection
Large magnets can smash fingers instantly. Never place your hand betwixt two strong magnets.
Implant safety
Patients with a heart stimulator must keep an safe separation from magnets. The magnetic field can disrupt the operation of the implant.
