MW 3x2 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010064
GTIN/EAN: 5906301810636
Diameter Ø
3 mm [±0,1 mm]
Height
2 mm [±0,1 mm]
Weight
0.11 g
Magnetization Direction
↑ axial
Load capacity
0.30 kg / 2.99 N
Magnetic Induction
493.99 mT / 4940 Gs
Coating
[NiCuNi] Nickel
0.1476 ZŁ with VAT / pcs + price for transport
0.1200 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Contact us by phone
+48 888 99 98 98
or let us know via
our online form
our website.
Parameters as well as appearance of magnets can be verified with our
force calculator.
Order by 14:00 and we’ll ship today!
Physical properties - MW 3x2 / N38 - cylindrical magnet
Specification / characteristics - MW 3x2 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010064 |
| GTIN/EAN | 5906301810636 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 3 mm [±0,1 mm] |
| Height | 2 mm [±0,1 mm] |
| Weight | 0.11 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.30 kg / 2.99 N |
| Magnetic Induction ~ ? | 493.99 mT / 4940 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical analysis of the magnet - data
These values constitute the outcome of a mathematical analysis. Results are based on algorithms for the material Nd2Fe14B. Actual conditions might slightly differ. Treat these calculations as a preliminary roadmap for designers.
Table 1: Static force (force vs distance) - interaction chart
MW 3x2 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
4928 Gs
492.8 mT
|
0.30 kg / 0.66 LBS
300.0 g / 2.9 N
|
safe |
| 1 mm |
2106 Gs
210.6 mT
|
0.05 kg / 0.12 LBS
54.8 g / 0.5 N
|
safe |
| 2 mm |
845 Gs
84.5 mT
|
0.01 kg / 0.02 LBS
8.8 g / 0.1 N
|
safe |
| 3 mm |
393 Gs
39.3 mT
|
0.00 kg / 0.00 LBS
1.9 g / 0.0 N
|
safe |
| 5 mm |
124 Gs
12.4 mT
|
0.00 kg / 0.00 LBS
0.2 g / 0.0 N
|
safe |
| 10 mm |
21 Gs
2.1 mT
|
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
safe |
| 15 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
safe |
| 20 mm |
3 Gs
0.3 mT
|
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
safe |
| 30 mm |
1 Gs
0.1 mT
|
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
safe |
| 50 mm |
0 Gs
0.0 mT
|
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
safe |
Table 2: Shear capacity (vertical surface)
MW 3x2 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.06 kg / 0.13 LBS
60.0 g / 0.6 N
|
| 1 mm | Stal (~0.2) |
0.01 kg / 0.02 LBS
10.0 g / 0.1 N
|
| 2 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
2.0 g / 0.0 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
|
Table 3: Wall mounting (shearing) - vertical pull
MW 3x2 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.09 kg / 0.20 LBS
90.0 g / 0.9 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.06 kg / 0.13 LBS
60.0 g / 0.6 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.03 kg / 0.07 LBS
30.0 g / 0.3 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.15 kg / 0.33 LBS
150.0 g / 1.5 N
|
Table 4: Material efficiency (saturation) - power losses
MW 3x2 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.03 kg / 0.07 LBS
30.0 g / 0.3 N
|
| 1 mm |
|
0.08 kg / 0.17 LBS
75.0 g / 0.7 N
|
| 2 mm |
|
0.15 kg / 0.33 LBS
150.0 g / 1.5 N
|
| 3 mm |
|
0.22 kg / 0.50 LBS
225.0 g / 2.2 N
|
| 5 mm |
|
0.30 kg / 0.66 LBS
300.0 g / 2.9 N
|
| 10 mm |
|
0.30 kg / 0.66 LBS
300.0 g / 2.9 N
|
| 11 mm |
|
0.30 kg / 0.66 LBS
300.0 g / 2.9 N
|
| 12 mm |
|
0.30 kg / 0.66 LBS
300.0 g / 2.9 N
|
Table 5: Thermal stability (stability) - power drop
MW 3x2 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.30 kg / 0.66 LBS
300.0 g / 2.9 N
|
OK |
| 40 °C | -2.2% |
0.29 kg / 0.65 LBS
293.4 g / 2.9 N
|
OK |
| 60 °C | -4.4% |
0.29 kg / 0.63 LBS
286.8 g / 2.8 N
|
OK |
| 80 °C | -6.6% |
0.28 kg / 0.62 LBS
280.2 g / 2.7 N
|
|
| 100 °C | -28.8% |
0.21 kg / 0.47 LBS
213.6 g / 2.1 N
|
Table 6: Two magnets (repulsion) - field collision
MW 3x2 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Sliding Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
1.06 kg / 2.33 LBS
5 766 Gs
|
0.16 kg / 0.35 LBS
159 g / 1.6 N
|
N/A |
| 1 mm |
0.49 kg / 1.08 LBS
6 712 Gs
|
0.07 kg / 0.16 LBS
74 g / 0.7 N
|
0.44 kg / 0.97 LBS
~0 Gs
|
| 2 mm |
0.19 kg / 0.43 LBS
4 213 Gs
|
0.03 kg / 0.06 LBS
29 g / 0.3 N
|
0.17 kg / 0.38 LBS
~0 Gs
|
| 3 mm |
0.08 kg / 0.17 LBS
2 629 Gs
|
0.01 kg / 0.02 LBS
11 g / 0.1 N
|
0.07 kg / 0.15 LBS
~0 Gs
|
| 5 mm |
0.01 kg / 0.03 LBS
1 131 Gs
|
0.00 kg / 0.00 LBS
2 g / 0.0 N
|
0.01 kg / 0.03 LBS
~0 Gs
|
| 10 mm |
0.00 kg / 0.00 LBS
248 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 LBS
41 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 LBS
3 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 LBS
2 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 LBS
1 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 LBS
1 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 LBS
1 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 LBS
0 Gs
|
0.00 kg / 0.00 LBS
0 g / 0.0 N
|
0.00 kg / 0.00 LBS
~0 Gs
|
Table 7: Protective zones (implants) - precautionary measures
MW 3x2 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 2.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 1.5 cm |
| Timepiece | 20 Gs (2.0 mT) | 1.5 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 1.0 cm |
| Car key | 50 Gs (5.0 mT) | 1.0 cm |
| Payment card | 400 Gs (40.0 mT) | 0.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Impact energy (cracking risk) - collision effects
MW 3x2 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
52.67 km/h
(14.63 m/s)
|
0.01 J | |
| 30 mm |
91.22 km/h
(25.34 m/s)
|
0.04 J | |
| 50 mm |
117.77 km/h
(32.71 m/s)
|
0.06 J | |
| 100 mm |
166.55 km/h
(46.26 m/s)
|
0.12 J |
Table 9: Coating parameters (durability)
MW 3x2 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Pc)
MW 3x2 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 353 Mx | 3.5 µWb |
| Pc Coefficient | 0.71 | High (Stable) |
Table 11: Submerged application
MW 3x2 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.30 kg | Standard |
| Water (riverbed) |
0.34 kg
(+0.04 kg buoyancy gain)
|
+14.5% |
1. Sliding resistance
*Caution: On a vertical surface, the magnet retains only approx. 20-30% of its nominal pull.
2. Plate thickness effect
*Thin steel (e.g. 0.5mm PC case) severely limits the holding force.
3. Thermal stability
*For N38 material, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.71
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Environmental data
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other products
Strengths and weaknesses of Nd2Fe14B magnets.
Pros
- They virtually do not lose strength, because even after 10 years the decline in efficiency is only ~1% (in laboratory conditions),
- Neodymium magnets remain remarkably resistant to loss of magnetic properties caused by magnetic disturbances,
- A magnet with a smooth silver surface has better aesthetics,
- Neodymium magnets ensure maximum magnetic induction on a small surface, which allows for strong attraction,
- Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their form) at temperatures up to 230°C and above...
- Thanks to modularity in constructing and the ability to customize to specific needs,
- Universal use in future technologies – they are commonly used in magnetic memories, brushless drives, medical equipment, and modern systems.
- Compactness – despite small sizes they offer powerful magnetic field, making them ideal for precision applications
Cons
- At very strong impacts they can crack, therefore we advise placing them in special holders. A metal housing provides additional protection against damage, as well as increases the magnet's durability.
- When exposed to high temperature, neodymium magnets experience a drop in strength. Often, when the temperature exceeds 80°C, their strength decreases (depending on the size and shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- Magnets exposed to a humid environment can rust. Therefore while using outdoors, we recommend using waterproof magnets made of rubber, plastic or other material protecting against moisture
- Due to limitations in producing nuts and complex forms in magnets, we recommend using a housing - magnetic mechanism.
- Potential hazard resulting from small fragments of magnets can be dangerous, if swallowed, which becomes key in the context of child health protection. It is also worth noting that small components of these magnets are able to be problematic in diagnostics medical when they are in the body.
- With mass production the cost of neodymium magnets is economically unviable,
Holding force characteristics
Magnetic strength at its maximum – what it depends on?
- using a base made of mild steel, functioning as a circuit closing element
- whose transverse dimension is min. 10 mm
- with an polished touching surface
- without the slightest clearance between the magnet and steel
- for force acting at a right angle (pull-off, not shear)
- in stable room temperature
Practical aspects of lifting capacity – factors
- Space between magnet and steel – even a fraction of a millimeter of distance (caused e.g. by veneer or unevenness) drastically reduces the magnet efficiency, often by half at just 0.5 mm.
- Angle of force application – highest force is available only during pulling at a 90° angle. The force required to slide of the magnet along the plate is typically several times smaller (approx. 1/5 of the lifting capacity).
- Metal thickness – thin material does not allow full use of the magnet. Magnetic flux penetrates through instead of converting into lifting capacity.
- Steel type – low-carbon steel gives the best results. Alloy steels decrease magnetic properties and holding force.
- Surface quality – the more even the plate, the better the adhesion and higher the lifting capacity. Roughness creates an air distance.
- Temperature – temperature increase results in weakening of force. Check the thermal limit for a given model.
Lifting capacity testing was conducted on plates with a smooth surface of suitable thickness, under a perpendicular pulling force, whereas under attempts to slide the magnet the holding force is lower. Additionally, even a slight gap between the magnet’s surface and the plate decreases the lifting capacity.
Safe handling of NdFeB magnets
Warning for allergy sufferers
Certain individuals suffer from a sensitization to Ni, which is the standard coating for NdFeB magnets. Frequent touching may cause a rash. We recommend use safety gloves.
Fragile material
Beware of splinters. Magnets can explode upon violent connection, launching sharp fragments into the air. Wear goggles.
Data carriers
Equipment safety: Neodymium magnets can ruin payment cards and delicate electronics (heart implants, medical aids, mechanical watches).
Pinching danger
Big blocks can smash fingers in a fraction of a second. Under no circumstances place your hand between two attracting surfaces.
GPS Danger
GPS units and smartphones are highly susceptible to magnetic fields. Close proximity with a strong magnet can ruin the sensors in your phone.
Handling guide
Handle magnets with awareness. Their immense force can shock even professionals. Stay alert and respect their force.
Danger to pacemakers
For implant holders: Strong magnetic fields affect medical devices. Maintain minimum 30 cm distance or request help to work with the magnets.
Flammability
Machining of neodymium magnets carries a risk of fire risk. Magnetic powder oxidizes rapidly with oxygen and is hard to extinguish.
Thermal limits
Avoid heat. NdFeB magnets are sensitive to temperature. If you require operation above 80°C, look for special high-temperature series (H, SH, UH).
Swallowing risk
NdFeB magnets are not toys. Accidental ingestion of several magnets can lead to them connecting inside the digestive tract, which poses a critical condition and requires immediate surgery.
