tel: +48 22 499 98 98

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our store's offer. Practically all magnesy neodymowe on our website are in stock for immediate purchase (see the list). See the magnet price list for more details check the magnet price list

Magnet for water searching F400 GOLD

Where to buy powerful neodymium magnet? Magnetic holders in solid and airtight enclosure are perfect for use in challenging weather, including in the rain and snow see...

magnetic holders

Holders with magnets can be applied to facilitate production processes, underwater discoveries, or locating space rocks made of metal read...

Order is shipped if the order is placed before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 3x2 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010064

GTIN: 5906301810636

5

Diameter Ø [±0,1 mm]

3 mm

Height [±0,1 mm]

2 mm

Weight

0.11 g

Magnetization Direction

↑ axial

Load capacity

0.33 kg / 3.24 N

Magnetic Induction

493.99 mT

Coating

[NiCuNi] nickel

0.16 with VAT / pcs + price for transport

0.13 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.13 ZŁ
0.16 ZŁ
price from 1000 pcs
0.12 ZŁ
0.14 ZŁ
price from 2000 pcs
0.11 ZŁ
0.14 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MW 3x2 / N38 - cylindrical magnet

Specification/characteristics MW 3x2 / N38 - cylindrical magnet
properties
values
Cat. no.
010064
GTIN
5906301810636
Production/Distribution
Dhit sp. z o.o.
Country of origin
Polska / Chiny / Niemcy
Customs code
85059029
Diameter Ø
3 mm [±0,1 mm]
Height
2 mm [±0,1 mm]
Weight
0.11 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
0.33 kg / 3.24 N
Magnetic Induction ~ ?
493.99 mT
Coating
[NiCuNi] nickel
tolerancja wykonania
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets i.e. MW 3x2 / N38 are magnets created of neodymium in a cylinder form. They are known for their very strong magnetic properties, which exceed ordinary ferrite magnets. Thanks to their power, they are often used in devices that require strong adhesion. The standard temperature resistance of such magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature rises with the growth of the magnet. Moreover, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their resistance to corrosion. The shape of a cylinder is as well very popular among neodymium magnets. The magnet named MW 3x2 / N38 with a magnetic strength ${capacity} kg weighs only ${weight} grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, represent the strongest known material for magnet production. The technology of their production is complicated and includes sintering special neodymium alloys with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in many applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a thin layer of epoxy to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, as well as in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of purchasing of cylindrical neodymium magnets, several enterprises offer such products. One of the suggested suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address can be found directly in the contact tab. It's always worth visit the site for the latest information as well as offers, and before visiting, please call.
Although, cylindrical neodymium magnets are useful in various applications, they can also pose certain risk. Due to their strong magnetic power, they can pull metallic objects with great force, which can lead to crushing skin and other surfaces, especially be careful with fingers. One should not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin protective layer. In short, although they are handy, one should handle them with due caution.
Neodymium magnets, with the formula neodymium-iron-boron, are currently the strong magnets on the market. They are produced through a advanced sintering process, which involves melting special alloys of neodymium with additional metals and then forming and heat treating. Their amazing magnetic strength comes from the unique production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often coated with coatings, such as silver, to shield them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can cause a reduction of their magnetic strength, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic strength.

Advantages and disadvantages of neodymium magnets

Neodymium magnets, also known as NdFeB magnets, are currently the strongest permanent magnets available on the market. Their exceptional magnetic properties make them suitable for various industries, technologies, and everyday life. Below are the key advantages:

  • Immense attractive force: Even small neodymium magnets generate a very strong magnetic field.
  • High coercivity: They are resistant to demagnetization by external magnetic fields.
  • Wide operating temperature range: Standard neodymium magnets operate up to 80°C, with special versions up to 230°C.
  • Variety of shapes and sizes: Available in many forms, making them easy to adapt to specific applications.
  • Relatively low price compared to strength: They offer the best strength-to-price ratio among all magnets.
  • Longevity: With proper use, they retain their magnetic properties for many years.
  • Versatility of applications: From electric motors to speakers, separators, toys, and jewelry.

Despite numerous advantages, neodymium magnets also have certain disadvantages to consider:

  • Brittleness: They are hard but brittle and prone to cracking or chipping upon impact.
  • Limited operating temperature for standard versions: Above the Curie temperature, they lose their magnetic properties.
  • Strong magnetic field can be dangerous: They can damage electronics, magnetic cards, and pose a risk of attracting metal objects with great force.
  • Difficulties in mechanical processing: Due to their hardness and brittleness, processing them is complex.

Handle Neodymium Magnets Carefully

Never bring neodymium magnets close to a phone and GPS.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets are among the strongest magnets on Earth. The astonishing force they generate between each other can surprise you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

Magnets will attract each other within a distance of several to around 10 cm from each other. Remember not to place fingers between magnets or alternatively in their path when attract. Depending on how huge the neodymium magnets are, they can lead to a cut or alternatively a fracture.

Neodymium magnets can demagnetize at high temperatures.

Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Neodymium magnets are not recommended for people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

  Do not give neodymium magnets to youngest children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are particularly delicate, resulting in damage.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

So that know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98