MW 3x1 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010063
GTIN/EAN: 5906301810629
Diameter Ø
3 mm [±0,1 mm]
Height
1 mm [±0,1 mm]
Weight
0.05 g
Magnetization Direction
↑ axial
Load capacity
0.21 kg / 2.10 N
Magnetic Induction
342.82 mT / 3428 Gs
Coating
[NiCuNi] Nickel
0.1353 ZŁ with VAT / pcs + price for transport
0.1100 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Contact us by phone
+48 22 499 98 98
alternatively let us know through
request form
the contact form page.
Specifications and form of neodymium magnets can be tested with our
modular calculator.
Orders submitted before 14:00 will be dispatched today!
Technical specification of the product - MW 3x1 / N38 - cylindrical magnet
Specification / characteristics - MW 3x1 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010063 |
| GTIN/EAN | 5906301810629 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 3 mm [±0,1 mm] |
| Height | 1 mm [±0,1 mm] |
| Weight | 0.05 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 0.21 kg / 2.10 N |
| Magnetic Induction ~ ? | 342.82 mT / 3428 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical simulation of the assembly - report
The following values are the direct effect of a engineering simulation. Values are based on algorithms for the material Nd2Fe14B. Operational performance might slightly differ from theoretical values. Please consider these data as a supplementary guide during assembly planning.
Table 1: Static force (force vs gap) - characteristics
MW 3x1 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
3422 Gs
342.2 mT
|
0.21 kg / 0.46 lbs
210.0 g / 2.1 N
|
safe |
| 1 mm |
1521 Gs
152.1 mT
|
0.04 kg / 0.09 lbs
41.5 g / 0.4 N
|
safe |
| 2 mm |
585 Gs
58.5 mT
|
0.01 kg / 0.01 lbs
6.1 g / 0.1 N
|
safe |
| 3 mm |
260 Gs
26.0 mT
|
0.00 kg / 0.00 lbs
1.2 g / 0.0 N
|
safe |
| 5 mm |
76 Gs
7.6 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
safe |
| 10 mm |
12 Gs
1.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
| 15 mm |
4 Gs
0.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
| 20 mm |
2 Gs
0.2 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
| 30 mm |
0 Gs
0.0 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
| 50 mm |
0 Gs
0.0 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
Table 2: Sliding capacity (wall)
MW 3x1 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.04 kg / 0.09 lbs
42.0 g / 0.4 N
|
| 1 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 2 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Wall mounting (sliding) - behavior on slippery surfaces
MW 3x1 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.06 kg / 0.14 lbs
63.0 g / 0.6 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.04 kg / 0.09 lbs
42.0 g / 0.4 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.02 kg / 0.05 lbs
21.0 g / 0.2 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.11 kg / 0.23 lbs
105.0 g / 1.0 N
|
Table 4: Steel thickness (substrate influence) - sheet metal selection
MW 3x1 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.02 kg / 0.05 lbs
21.0 g / 0.2 N
|
| 1 mm |
|
0.05 kg / 0.12 lbs
52.5 g / 0.5 N
|
| 2 mm |
|
0.11 kg / 0.23 lbs
105.0 g / 1.0 N
|
| 3 mm |
|
0.16 kg / 0.35 lbs
157.5 g / 1.5 N
|
| 5 mm |
|
0.21 kg / 0.46 lbs
210.0 g / 2.1 N
|
| 10 mm |
|
0.21 kg / 0.46 lbs
210.0 g / 2.1 N
|
| 11 mm |
|
0.21 kg / 0.46 lbs
210.0 g / 2.1 N
|
| 12 mm |
|
0.21 kg / 0.46 lbs
210.0 g / 2.1 N
|
Table 5: Thermal stability (stability) - power drop
MW 3x1 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.21 kg / 0.46 lbs
210.0 g / 2.1 N
|
OK |
| 40 °C | -2.2% |
0.21 kg / 0.45 lbs
205.4 g / 2.0 N
|
OK |
| 60 °C | -4.4% |
0.20 kg / 0.44 lbs
200.8 g / 2.0 N
|
|
| 80 °C | -6.6% |
0.20 kg / 0.43 lbs
196.1 g / 1.9 N
|
|
| 100 °C | -28.8% |
0.15 kg / 0.33 lbs
149.5 g / 1.5 N
|
Table 6: Magnet-Magnet interaction (attraction) - field range
MW 3x1 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Sliding Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
0.51 kg / 1.12 lbs
4 928 Gs
|
0.08 kg / 0.17 lbs
77 g / 0.8 N
|
N/A |
| 1 mm |
0.26 kg / 0.56 lbs
4 847 Gs
|
0.04 kg / 0.08 lbs
38 g / 0.4 N
|
0.23 kg / 0.51 lbs
~0 Gs
|
| 2 mm |
0.10 kg / 0.22 lbs
3 042 Gs
|
0.02 kg / 0.03 lbs
15 g / 0.1 N
|
0.09 kg / 0.20 lbs
~0 Gs
|
| 3 mm |
0.04 kg / 0.08 lbs
1 865 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.03 kg / 0.08 lbs
~0 Gs
|
| 5 mm |
0.01 kg / 0.01 lbs
764 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 10 mm |
0.00 kg / 0.00 lbs
153 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 20 mm |
0.00 kg / 0.00 lbs
23 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
2 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
1 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
0 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
0 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
0 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Safety (HSE) (electronics) - precautionary measures
MW 3x1 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 1.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 1.5 cm |
| Timepiece | 20 Gs (2.0 mT) | 1.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 1.0 cm |
| Car key | 50 Gs (5.0 mT) | 1.0 cm |
| Payment card | 400 Gs (40.0 mT) | 0.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 0.5 cm |
Table 8: Dynamics (cracking risk) - warning
MW 3x1 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
65.36 km/h
(18.16 m/s)
|
0.01 J | |
| 30 mm |
113.21 km/h
(31.45 m/s)
|
0.02 J | |
| 50 mm |
146.15 km/h
(40.60 m/s)
|
0.04 J | |
| 100 mm |
206.68 km/h
(57.41 m/s)
|
0.08 J |
Table 9: Corrosion resistance
MW 3x1 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Pc)
MW 3x1 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 257 Mx | 2.6 µWb |
| Pc Coefficient | 0.44 | Low (Flat) |
Table 11: Submerged application
MW 3x1 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.21 kg | Standard |
| Water (riverbed) |
0.24 kg
(+0.03 kg buoyancy gain)
|
+14.5% |
1. Vertical hold
*Note: On a vertical surface, the magnet holds just ~20% of its perpendicular strength.
2. Steel saturation
*Thin steel (e.g. computer case) significantly weakens the holding force.
3. Heat tolerance
*For N38 material, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.44
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other offers
Pros as well as cons of neodymium magnets.
Strengths
- They have constant strength, and over nearly ten years their performance decreases symbolically – ~1% (in testing),
- Neodymium magnets are characterized by exceptionally resistant to loss of magnetic properties caused by external magnetic fields,
- Thanks to the shiny finish, the layer of Ni-Cu-Ni, gold-plated, or silver gives an professional appearance,
- Magnets are characterized by excellent magnetic induction on the working surface,
- Thanks to resistance to high temperature, they are capable of working (depending on the shape) even at temperatures up to 230°C and higher...
- Possibility of individual forming as well as adjusting to precise requirements,
- Huge importance in electronics industry – they are commonly used in mass storage devices, drive modules, medical devices, and modern systems.
- Thanks to concentrated force, small magnets offer high operating force, in miniature format,
Limitations
- They are prone to damage upon too strong impacts. To avoid cracks, it is worth securing magnets in a protective case. Such protection not only protects the magnet but also improves its resistance to damage
- Neodymium magnets decrease their strength under the influence of heating. As soon as 80°C is exceeded, many of them start losing their power. Therefore, we recommend our special magnets marked [AH], which maintain stability even at temperatures up to 230°C
- Magnets exposed to a humid environment can rust. Therefore when using outdoors, we suggest using water-impermeable magnets made of rubber, plastic or other material protecting against moisture
- We suggest cover - magnetic holder, due to difficulties in realizing nuts inside the magnet and complex shapes.
- Health risk related to microscopic parts of magnets are risky, if swallowed, which gains importance in the context of child health protection. Additionally, small elements of these devices can be problematic in diagnostics medical in case of swallowing.
- High unit price – neodymium magnets are more expensive than other types of magnets (e.g. ferrite), which hinders application in large quantities
Holding force characteristics
Maximum lifting force for a neodymium magnet – what contributes to it?
- using a sheet made of mild steel, serving as a magnetic yoke
- with a cross-section of at least 10 mm
- with an ground contact surface
- with total lack of distance (no coatings)
- during detachment in a direction perpendicular to the plane
- in temp. approx. 20°C
Practical aspects of lifting capacity – factors
- Gap (betwixt the magnet and the plate), as even a tiny distance (e.g. 0.5 mm) can cause a drastic drop in lifting capacity by up to 50% (this also applies to varnish, rust or debris).
- Force direction – remember that the magnet has greatest strength perpendicularly. Under shear forces, the holding force drops drastically, often to levels of 20-30% of the nominal value.
- Substrate thickness – to utilize 100% power, the steel must be adequately massive. Paper-thin metal limits the lifting capacity (the magnet "punches through" it).
- Metal type – different alloys reacts the same. Alloy additives worsen the attraction effect.
- Surface quality – the more even the plate, the better the adhesion and higher the lifting capacity. Roughness creates an air distance.
- Operating temperature – NdFeB sinters have a sensitivity to temperature. At higher temperatures they are weaker, and at low temperatures gain strength (up to a certain limit).
Lifting capacity testing was performed on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, however under attempts to slide the magnet the load capacity is reduced by as much as 5 times. In addition, even a slight gap between the magnet and the plate decreases the load capacity.
Precautions when working with NdFeB magnets
Health Danger
Individuals with a pacemaker should maintain an large gap from magnets. The magnetism can interfere with the operation of the life-saving device.
Machining danger
Fire hazard: Rare earth powder is highly flammable. Avoid machining magnets without safety gear as this risks ignition.
GPS Danger
An intense magnetic field disrupts the functioning of compasses in phones and navigation systems. Do not bring magnets close to a smartphone to avoid breaking the sensors.
Metal Allergy
Allergy Notice: The nickel-copper-nickel coating consists of nickel. If skin irritation appears, immediately stop handling magnets and use protective gear.
This is not a toy
Absolutely keep magnets out of reach of children. Choking hazard is high, and the effects of magnets clamping inside the body are very dangerous.
Electronic devices
Intense magnetic fields can corrupt files on credit cards, hard drives, and other magnetic media. Keep a distance of at least 10 cm.
Risk of cracking
Despite the nickel coating, the material is brittle and not impact-resistant. Do not hit, as the magnet may shatter into sharp, dangerous pieces.
Permanent damage
Watch the temperature. Exposing the magnet to high heat will ruin its magnetic structure and pulling force.
Safe operation
Before starting, read the rules. Uncontrolled attraction can destroy the magnet or injure your hand. Be predictive.
Serious injuries
Watch your fingers. Two powerful magnets will join immediately with a force of massive weight, crushing anything in their path. Be careful!
