MW 3x1 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010063
GTIN: 5906301810629
Diameter Ø [±0,1 mm]
3 mm
Height [±0,1 mm]
1 mm
Weight
0.05 g
Magnetization Direction
↑ axial
Load capacity
0.17 kg / 1.67 N
Magnetic Induction
342.82 mT
Coating
[NiCuNi] nickel
0.1353 ZŁ with VAT / pcs + price for transport
0.1100 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to talk magnets?
Call us
+48 888 99 98 98
otherwise get in touch by means of
contact form
the contact section.
Weight along with appearance of magnetic components can be verified on our
power calculator.
Order by 14:00 and we’ll ship today!
MW 3x1 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, even though neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a thin layer of nickel to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.
In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, as well as in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often covered with coatings, such as epoxy, to protect them from external factors and extend their lifespan. Temperatures exceeding 130°C can result in a deterioration of their magnetic strength, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic properties.
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their strong magnetism, neodymium magnets have these key benefits:
- They do not lose their strength nearly ten years – the decrease of strength is only ~1% (according to tests),
- They remain magnetized despite exposure to strong external fields,
- In other words, due to the glossy gold coating, the magnet obtains an aesthetic appearance,
- They possess strong magnetic force measurable at the magnet’s surface,
- With the right combination of compounds, they reach significant thermal stability, enabling operation at or above 230°C (depending on the form),
- With the option for fine forming and targeted design, these magnets can be produced in various shapes and sizes, greatly improving engineering flexibility,
- Significant impact in cutting-edge sectors – they are used in HDDs, electric drives, diagnostic apparatus and other advanced devices,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, in miniature format,
Disadvantages of magnetic elements:
- They are prone to breaking when subjected to a powerful impact. If the magnets are exposed to shocks, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage and additionally reinforces its overall resistance,
- High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a humid environment, especially when used outside, we recommend using sealed magnets, such as those made of non-metallic materials,
- Limited ability to create threads in the magnet – the use of a housing is recommended,
- Potential hazard due to small fragments may arise, when consumed by mistake, which is notable in the protection of children. Furthermore, miniature parts from these assemblies may interfere with diagnostics after being swallowed,
- Due to the price of neodymium, their cost is relatively high,
Detachment force of the magnet in optimal conditions – what contributes to it?
The given strength of the magnet represents the optimal strength, calculated in ideal conditions, specifically:
- with mild steel, serving as a magnetic flux conductor
- of a thickness of at least 10 mm
- with a refined outer layer
- with no separation
- under perpendicular detachment force
- under standard ambient temperature
Key elements affecting lifting force
In practice, the holding capacity of a magnet is affected by these factors, arranged from the most important to the least relevant:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was performed on a smooth plate of suitable thickness, under a perpendicular pulling force, in contrast under attempts to slide the magnet the load capacity is reduced by as much as fivefold. Additionally, even a slight gap {between} the magnet’s surface and the plate lowers the load capacity.
Handle with Care: Neodymium Magnets
Neodymium magnetic are extremely fragile, resulting in shattering.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets should not be near people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Neodymium magnets should not be around children.
Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.
Neodymium magnets bounce and also touch each other mutually within a radius of several to almost 10 cm from each other.
Keep neodymium magnets away from the wallet, computer, and TV.
The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their power can surprise you.
To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Be careful!
In order for you to know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous powerful neodymium magnets.