MW 25x2.5 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010449
GTIN: 5906301811121
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
2.5 mm
Weight
9.2 g
Magnetization Direction
↑ axial
Load capacity
3.46 kg / 33.93 N
Magnetic Induction
121.57 mT
Coating
[NiCuNi] nickel
3.95 ZŁ with VAT / pcs + price for transport
3.21 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure which magnet to buy?
Call us
+48 22 499 98 98
otherwise get in touch through
request form
the contact form page.
Lifting power as well as appearance of neodymium magnets can be analyzed on our
our magnetic calculator.
Same-day shipping for orders placed before 14:00.
MW 25x2.5 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, although neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a thin layer of nickel to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.
In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, as well as in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often coated with thin coatings, such as nickel, to preserve them from environmental factors and extend their lifespan. High temperatures exceeding 130°C can result in a deterioration of their magnetic strength, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic strength.
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their immense magnetic power, neodymium magnets offer the following advantages:
- They virtually do not lose power, because even after ten years, the decline in efficiency is only ~1% (based on calculations),
- They show exceptional resistance to demagnetization from outside magnetic sources,
- Because of the lustrous layer of silver, the component looks high-end,
- They possess significant magnetic force measurable at the magnet’s surface,
- Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
- The ability for precise shaping or customization to specific needs – neodymium magnets can be manufactured in multiple variants of geometries, which amplifies their functionality across industries,
- Significant impact in cutting-edge sectors – they find application in computer drives, electric drives, healthcare devices or even other advanced devices,
- Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications
Disadvantages of NdFeB magnets:
- They are prone to breaking when subjected to a powerful impact. If the magnets are exposed to shocks, we recommend in a metal holder. The steel housing, in the form of a holder, protects the magnet from fracture and additionally increases its overall robustness,
- High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of rubber for outdoor use,
- Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing holes directly in the magnet,
- Safety concern linked to microscopic shards may arise, when consumed by mistake, which is notable in the family environments. It should also be noted that minuscule fragments from these magnets may interfere with diagnostics after being swallowed,
- Due to a complex production process, their cost is considerably higher,
Best holding force of the magnet in ideal parameters – what contributes to it?
The given strength of the magnet represents the optimal strength, measured in ideal conditions, namely:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a refined outer layer
- with no separation
- in a perpendicular direction of force
- under standard ambient temperature
What influences lifting capacity in practice
The lifting capacity of a magnet is determined by in practice key elements, from primary to secondary:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was performed on plates with a smooth surface of suitable thickness, under perpendicular forces, whereas under parallel forces the holding force is lower. Additionally, even a minimal clearance {between} the magnet’s surface and the plate lowers the load capacity.
We Recommend Caution with Neodymium Magnets
You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.
Do not give neodymium magnets to youngest children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Neodymium magnets can demagnetize at high temperatures.
Despite the fact that magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Avoid bringing neodymium magnets close to a phone or GPS.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Magnets made of neodymium are extremely fragile, they easily break as well as can crumble.
Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.
Neodymium magnets are the strongest magnets ever created, and their power can shock you.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
In the situation of holding a finger in the path of a neodymium magnet, in such a case, a cut or a fracture may occur.
Be careful!
Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.