tel: +48 22 499 98 98

neodymium magnets

We provide red color magnets Nd2Fe14B - our proposal. All "magnets" on our website are available for immediate delivery (see the list). Check out the magnet price list for more details see the magnet price list

Magnet for searching F200 GOLD

Where to buy very strong magnet? Magnetic holders in airtight, solid enclosure are perfect for use in difficult, demanding weather conditions, including snow and rain read...

magnetic holders

Magnetic holders can be applied to enhance production, underwater discoveries, or finding meteorites from gold see...

We promise to ship ordered magnets on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available Ships today (order by 14:00)

SM 32x275 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130376

GTIN: 5906301813248

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

275 mm

Weight

1475 g

824.10 with VAT / pcs + price for transport

670.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
670.00 ZŁ
824.10 ZŁ
price from 5 pcs
636.50 ZŁ
782.90 ZŁ
price from 10 pcs
603.00 ZŁ
741.69 ZŁ

Hunting for a discount?

Call us +48 888 99 98 98 if you prefer send us a note by means of contact form the contact form page.
Lifting power as well as appearance of magnetic components can be estimated on our modular calculator.

Same-day processing for orders placed before 14:00.

SM 32x275 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 32x275 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130376
GTIN
5906301813248
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
275 mm [±0,1 mm]
Weight
1475 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

This product serves to catch ferromagnetic impurities from raw materials. It is installed in chutes and hoppers to protect production machinery. Thanks to the use of strong neodymium magnets, the rod catches even fine metal dust.
The construction is based on a sealed stainless steel housing. The core is a magnetic circuit generating high induction. Thanks to this, the rod is durable and hygienic.
Metal impurities are strongly attracted, making manual removal difficult. We recommend taping the filings and peeling them off together. For easier maintenance, consider a system with a cleaning sleeve.
The more Gauss, the smaller and weakly magnetic particles will be caught. Standard rods (~8000 Gs) are sufficient for bolts, nails, and chips. High Power versions (~12000-14000 Gs) are necessary to catch metal dust and stainless steel after processing.
We can produce a rod with any mounting end. You can choose a mounting method compatible with your project. Contact us for a quote on non-standard dimensions.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their long-term stability, neodymium magnets provide the following advantages:

  • They do not lose their magnetism, even after nearly ten years – the decrease of power is only ~1% (theoretically),
  • They show exceptional resistance to demagnetization from outside magnetic sources,
  • By applying a shiny layer of gold, the element gains a sleek look,
  • They possess intense magnetic force measurable at the magnet’s surface,
  • Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • Thanks to the flexibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in diverse shapes and sizes, which broadens their functional possibilities,
  • Important function in new technology industries – they serve a purpose in computer drives, electric motors, diagnostic apparatus or even other advanced devices,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in compact dimensions, which makes them useful in small systems

Disadvantages of magnetic elements:

  • They can break when subjected to a powerful impact. If the magnets are exposed to external force, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture while also enhances its overall durability,
  • Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to humidity can rust. Therefore, for outdoor applications, we suggest waterproof types made of rubber,
  • Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing fine shapes directly in the magnet,
  • Potential hazard related to magnet particles may arise, especially if swallowed, which is crucial in the family environments. Additionally, minuscule fragments from these assemblies have the potential to disrupt scanning if inside the body,
  • High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which can restrict large-scale applications

Maximum lifting capacity of the magnetwhat it depends on?

The given pulling force of the magnet means the maximum force, measured under optimal conditions, specifically:

  • with mild steel, used as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with zero air gap
  • with vertical force applied
  • at room temperature

What influences lifting capacity in practice

In practice, the holding capacity of a magnet is affected by these factors, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed by applying a polished steel plate of optimal thickness (min. 20 mm), under perpendicular detachment force, however under shearing force the lifting capacity is smaller. Moreover, even a minimal clearance {between} the magnet and the plate decreases the load capacity.

Be Cautious with Neodymium Magnets

Neodymium magnets can demagnetize at high temperatures.

Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Neodymium magnets are especially fragile, resulting in their breakage.

Neodymium magnets are highly fragile, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Never bring neodymium magnets close to a phone and GPS.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

Magnets will attract each other within a distance of several to around 10 cm from each other. Remember not to put fingers between magnets or in their path when they attract. Magnets, depending on their size, are able even cut off a finger or alternatively there can be a significant pressure or even a fracture.

Keep neodymium magnets away from the wallet, computer, and TV.

Neodymium magnets generate intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can surprise you.

To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Be careful!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98