tel: +48 888 99 98 98

neodymium magnets

We provide blue color magnetic Nd2Fe14B - our proposal. All magnesy neodymowe on our website are in stock for immediate purchase (check the list). See the magnet price list for more details check the magnet price list

Magnets for water searching F300 GOLD

Where to buy very strong neodymium magnet? Magnetic holders in airtight and durable steel casing are perfect for use in difficult, demanding weather conditions, including in the rain and snow check...

magnets with holders

Holders with magnets can be used to enhance production, underwater exploration, or finding meteorites from gold more information...

We promise to ship ordered magnets if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow!

SM 32x275 [2xM8] / N42 - magnetic roller

magnetic separator

catalog number 130376

GTIN: 5906301813248

no reviews

diameter Ø

32 mm [±0,1 mm]

height

275 mm [±0,1 mm]

max. temperature

≤ 80 °C

824.10 PLN gross price (including VAT) / pcs +

670.00 PLN net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
670.00 PLN
824.10 PLN
price from 4 pcs
636.50 PLN
782.89 PLN
price from 7 pcs
603.00 PLN
741.69 PLN

Want to bargain?

Give us a call tel: +48 22 499 98 98 or write through form on our website. You can check the lifting capacity as well as the shape of neodymium magnets in our power calculator power calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: magnetic separator 32x275 [2xM8] / N42

Characteristics: magnetic separator 32x275 [2xM8] / N42
Properties
Values
catalog number
130376
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
32 mm [±0,1 mm]
height
275 mm [±0,1 mm]
max. temperature ?
≤ 80 °C
weight
1475.00 g
execution tolerance
± 0.1 mm
rodzaj materiału
AISI 304 - bezpieczna dla żywności
rodzaj magnesów
NdFeB N42
ilość gwintów
2x [M8] wewnętrzne
biegunowość
obwodowa - 10 nadbiegunników
indukcja magnetyczna
~ 8 000 Gauss [±5%]
max. temp. pracy
poniżej ≤ 80°C
grubość rury osłonowej
1 mm

Magnetic properties of the material N42

material characteristics N42
Properties
Values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
40-42
BH max MGOe
energy density [Min. - Max.]
318-334
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
The device roller magnetic is based on the use of neodymium magnets, which are welded in a casing made of stainless steel mostly AISI304. Due to this, it is possible to efficiently segregate ferromagnetic particles from different substances. A key aspect of its operation is the use of repulsion of magnetic poles N and S, which allows magnetic substances to be attracted. The thickness of the magnet and its structure's pitch affect the power and range of the separator's operation.
Generally speaking, magnetic separators serve to segregate ferromagnetic elements. If the cans are made from ferromagnetic materials, the separator will effectively segregate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers find application in the food sector for the elimination of metallic contaminants, such as iron fragments or iron dust. Our rods are constructed from acid-resistant steel, EN 1.4301, intended for contact with food.
Magnetic rollers, often called cylindrical magnets, find application in food production, metal separation as well as waste processing. They help in extracting iron dust in the course of the process of separating metals from other wastes.
Our magnetic rollers are composed of neodymium magnets placed in a tube of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar can be with M8 threaded openings, enabling simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars differ in terms of flux density, magnetic force lines and the field of the magnetic field. We produce them in two materials, N42 as well as N52.
Usually it is believed that the greater the magnet's power, the more efficient it is. But, the value of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and specific needs. The standard operating temperature of a magnetic bar is 80°C.
In the case where the magnet is thin, the magnetic force lines will be short. On the other hand, when the magnet is thick, the force lines will be longer and extend over a greater distance.
For making the casings of magnetic separators - rollers, most often stainless steel is used, particularly types AISI 304, AISI 316, and AISI 316L.
In a saltwater environment, AISI 316 steel exhibits the best resistance due to its outstanding anti-corrosion properties.
Magnetic bars stand out for their unique configuration of poles and their ability to attract magnetic substances directly onto their surface, as opposed to other separators that often use more complicated filtration systems.
Technical designations and terms related to magnetic separators include amongst others magnet pitch, polarity, and magnetic induction, as well as the type of steel used.
Magnetic induction for a magnet on a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value near the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations less than N27 or N25 indicate recycling that falls below the standard - they are not suitable.
Neodymium magnetic rollers offer a range of benefits such as higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. Disadvantages may include higher cost compared to other types of magnets and the need for regular maintenance.
For proper maintenance of neodymium magnetic rollers, it is advised {to clean them regularly from deposits, avoid extreme temperatures above 80 degrees, and to clean them regularly, avoiding temperatures above 80 degrees. The rollers have an IP67 waterproof rating, so if they are not watertight, the magnets inside may rust and weaken. Roller inspections are suggested to be conducted every two years. Caution should be exercised during use as there is a possibility of finger injury. If the protective tube is only 0.5 mm thick, it can wear out, which, in turn, can result in issues with the magnetic rod becoming unsealed and product contamination. The effective operating range of the roller equals its diameter, fi25mm is approximately 25mm active range, while fi32 is about 40mm.

Find suggested articles

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to immense power, neodymium magnets have the following advantages:

  • They do not lose power over time. After about 10 years, their power decreases by only ~1% (theoretically),
  • They protect against demagnetization caused by external magnetic field very well,
  • By applying a shiny coating of nickel, gold, or silver, the element gains an aesthetic appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • Magnetic neodymium magnets are characterized by very high magnetic induction on the surface of the magnet and can operate (depending on the form) even at temperatures of 230°C or higher...
  • Due to the option of accurate forming or adaptation to individual needs – neodymium magnets can be produced in a wide range of shapes and sizes, which enhances their versatility in applications.
  • Wide application in the industry of new technologies – find application in hard drives, electric drive mechanisms, medical apparatus or various technologically advanced devices.

Disadvantages of neodymium magnets:

  • They can break when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a metal holder. The steel housing in the form of a holder protects the magnet from impacts and at the same time increases its overall strength,
  • High temperatures can reduce the power of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent loss in strength (although it is dependent on the form and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
  • Magnets exposed to a humid environment can corrode. Therefore, when using them outdoors, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Health risk associated with microscopic parts of magnets are risky, when accidentally ingested, which is particularly important in the context of child safety. It's also worth noting that small elements of these products are able to be problematic in medical diagnosis in case of swallowing.

Exercise Caution with Neodymium Magnets

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can become demagnetized at high temperatures.

Even though magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnets are incredibly delicate, they easily break and can crumble.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

  Do not give neodymium magnets to children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

If joining of neodymium magnets is not under control, then they may crumble and also crack. You can't move them to each other. At a distance less than 10 cm you should hold them extremely strongly.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their strength can surprise you.

Familiarize yourself with our information to properly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

In order for you to know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous very strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98