tel: +48 22 499 98 98

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our store's offer. All magnesy neodymowe on our website are in stock for immediate delivery (see the list). See the magnet pricing for more details see the magnet price list

Magnets for treasure hunters F200 GOLD

Where to purchase strong neodymium magnet? Magnet holders in solid and airtight enclosure are ideally suited for use in difficult, demanding weather, including in the rain and snow check...

magnets with holders

Magnetic holders can be applied to facilitate production processes, underwater exploration, or locating space rocks from gold check...

Shipping is always shipped on the day of purchase before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x275 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130376

GTIN: 5906301813248

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

275 mm

Weight

1475 g

824.10 with VAT / pcs + price for transport

670.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
670.00 ZŁ
824.10 ZŁ
price from 5 pcs
636.50 ZŁ
782.90 ZŁ
price from 10 pcs
603.00 ZŁ
741.69 ZŁ

Not sure what to buy?

Give us a call +48 888 99 98 98 otherwise drop us a message through our online form the contact form page.
Parameters as well as shape of magnets can be analyzed using our our magnetic calculator.

Orders submitted before 14:00 will be dispatched today!

SM 32x275 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 32x275 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130376
GTIN
5906301813248
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
275 mm [±0,1 mm]
Weight
1475 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The main mechanism of the magnetic separator is the use of neodymium magnets, placed in a casing made of stainless steel mostly AISI304. Due to this, it is possible to efficiently segregate ferromagnetic particles from different substances. A fundamental component of its operation is the repulsion of magnetic poles N and S, which allows magnetic substances to be attracted. The thickness of the magnet and its structure pitch determine the power and range of the separator's operation.
Generally speaking, magnetic separators serve to extract ferromagnetic elements. If the cans are made of ferromagnetic materials, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers find application in the food industry for the elimination of metallic contaminants, such as iron fragments or iron dust. Our rollers are built from durable acid-resistant steel, AISI 304, suitable for contact with food.
Magnetic rollers, often called magnetic separators, are employed in metal separation, food production as well as recycling. They help in removing iron dust during the process of separating metals from other wastes.
Our magnetic rollers are composed of neodymium magnets placed in a stainless steel tube cylinder made of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar can be with M8 threaded openings, allowing for simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars stand out in terms of flux density, magnetic force lines and the field of the magnetic field. We produce them in materials, N42 as well as N52.
Usually it is believed that the stronger the magnet, the better. Nevertheless, the strength of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and anticipated needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is thin, the magnetic force lines will be more compressed. On the other hand, when the magnet is thick, the force lines will be extended and extend over a greater distance.
For constructing the casings of magnetic separators - rollers, most often stainless steel is used, particularly types AISI 316, AISI 316L, and AISI 304.
In a salt water contact, type AISI 316 steel exhibits the best resistance due to its excellent anti-corrosion properties.
Magnetic bars stand out for their unique configuration of poles and their capability to attract magnetic particles directly onto their surface, as opposed to other devices that often use complex filtration systems.
Technical designations and terms pertaining to magnetic separators include amongst others magnet pitch, polarity, and magnetic induction, as well as the steel type applied.
Magnetic induction for a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value near the magnetic pole. The outcome is verified in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that falls below the standard - they are not suitable.
Neodymium magnetic rollers offer a range of benefits such as excellent separation efficiency, strong magnetic field, and durability. However, some of the downsides may involve the need for regular cleaning, higher cost, and potential installation challenges.
To properly maintain of neodymium magnetic rollers, it is recommended regularly cleaning them from contaminants, avoiding high temperatures above 80 degrees, and protecting them from moisture if the threads are not sealed – in ours, they are. The rollers feature waterproofing IP67, so if they are leaky, the magnets inside can rust and weaken. Testing of the rollers is recommended be carried out every two years. Care should be taken, as it’s possible getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, used for separating ferromagnetic contaminants from raw materials. They are used in the food industry, recycling, and plastic processing, where the removal of iron metals and iron filings is essential.

Advantages and disadvantages of neodymium magnets NdFeB.

Besides their stability, neodymium magnets are valued for these benefits:

  • They virtually do not lose power, because even after ten years, the decline in efficiency is only ~1% (according to literature),
  • They show superior resistance to demagnetization from outside magnetic sources,
  • In other words, due to the metallic gold coating, the magnet obtains an stylish appearance,
  • They have very high magnetic induction on the surface of the magnet,
  • With the right combination of compounds, they reach increased thermal stability, enabling operation at or above 230°C (depending on the design),
  • With the option for customized forming and personalized design, these magnets can be produced in multiple shapes and sizes, greatly improving engineering flexibility,
  • Key role in modern technologies – they find application in hard drives, electric drives, clinical machines as well as high-tech tools,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of magnetic elements:

  • They are fragile when subjected to a heavy impact. If the magnets are exposed to mechanical hits, we recommend in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks and additionally increases its overall durability,
  • Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a humid environment, especially when used outside, we recommend using encapsulated magnets, such as those made of polymer,
  • The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is restricted,
  • Safety concern related to magnet particles may arise, when consumed by mistake, which is crucial in the health of young users. Additionally, minuscule fragments from these magnets might complicate medical imaging once in the system,
  • In cases of large-volume purchasing, neodymium magnet cost may be a barrier,

Magnetic strength at its maximum – what affects it?

The given holding capacity of the magnet means the highest holding force, calculated in the best circumstances, that is:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • in a perpendicular direction of force
  • at room temperature

Determinants of lifting force in real conditions

In practice, the holding capacity of a magnet is affected by these factors, from crucial to less important:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was tested on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, in contrast under parallel forces the lifting capacity is smaller. In addition, even a slight gap {between} the magnet’s surface and the plate decreases the load capacity.

Exercise Caution with Neodymium Magnets

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their power can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

Neodymium magnets can become demagnetized at high temperatures.

Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

  Neodymium magnets should not be in the vicinity youngest children.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.

Magnets will jump and also touch together within a distance of several to around 10 cm from each other.

Magnets made of neodymium are highly susceptible to damage, leading to shattering.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

Pay attention!

To raise awareness of why neodymium magnets are so dangerous, see the article titled How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98