tel: +48 888 99 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our store's offer. Practically all "magnets" on our website are in stock for immediate delivery (check the list). See the magnet pricing for more details see the magnet price list

Magnet for searching F300 GOLD

Where to purchase very strong neodymium magnet? Holders with magnets in solid and airtight steel enclosure are excellent for use in difficult, demanding weather conditions, including in the rain and snow read...

magnetic holders

Holders with magnets can be used to improve production, underwater exploration, or locating meteorites from gold more...

Enjoy shipping of your order if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x275 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130376

GTIN: 5906301813248

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

275 mm

Weight

1475 g

824.10 with VAT / pcs + price for transport

670.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
670.00 ZŁ
824.10 ZŁ
price from 4 pcs
636.50 ZŁ
782.89 ZŁ
price from 7 pcs
603.00 ZŁ
741.69 ZŁ

Do you have questions?

Pick up the phone and ask +48 888 99 98 98 if you prefer drop us a message through our online form our website.
Lifting power along with form of neodymium magnets can be checked using our online calculation tool.

Same-day processing for orders placed before 14:00.

SM 32x275 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 32x275 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130376
GTIN
5906301813248
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
275 mm [±0,1 mm]
Weight
1475 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
coercivity bHc ?
860-955
kA/m
coercivity bHc ?
10.8-12.0
kOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device roller magnetic is based on the use of neodymium magnets, which are placed in a casing made of stainless steel mostly AISI304. Due to this, it is possible to effectively segregate ferromagnetic particles from different substances. A fundamental component of its operation is the use of repulsion of magnetic poles N and S, which allows magnetic substances to be collected. The thickness of the embedded magnet and its structure's pitch affect the range and strength of the separator's operation.
Generally speaking, magnetic separators are used to extract ferromagnetic particles. If the cans are made from ferromagnetic materials, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers find application in the food sector to remove metallic contaminants, for example iron fragments or iron dust. Our rods are constructed from durable acid-resistant steel, AISI 304, suitable for contact with food.
Magnetic rollers, often called magnetic separators, are employed in metal separation, food production as well as waste processing. They help in removing iron dust during the process of separating metals from other materials.
Our magnetic rollers are built with a neodymium magnet anchored in a stainless steel tube cylinder made of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar will be with M8 threaded openings, allowing for simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars differ in terms of magnetic force lines, flux density and the area of operation of the magnetic field. We produce them in two materials, N42 and N52.
Often it is believed that the stronger the magnet, the more effective. However, the value of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and anticipated needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is thin, the magnetic force lines will be more compressed. On the other hand, in the case of a thicker magnet, the force lines will be longer and reach further.
For constructing the casings of magnetic separators - rollers, usually stainless steel is utilized, especially types AISI 304, AISI 316, and AISI 316L.
In a saltwater contact, type AISI 316 steel is highly recommended thanks to its excellent corrosion resistance.
Magnetic bars stand out for their specific arrangement of poles and their capability to attract magnetic particles directly onto their surface, in contrast to other devices that often use more complicated filtration systems.
Technical designations and terms related to magnetic separators comprise amongst others polarity, magnetic induction, magnet pitch, as well as the steel type applied.
Magnetic induction for a magnet on a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value near the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations less than N27 or N25 suggest recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic rollers offer a range of benefits such as higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. Disadvantages may include the need for regular cleaning, higher cost, and potential installation challenges.
To properly maintain of neodymium magnetic rollers, it’s worth regularly cleaning them from deposits, avoiding extreme temperatures up to 80°C, and shielding them from moisture if the threads are not sealed – in ours, they are. The rollers our rollers have waterproofing IP67, so if they are not sealed, the magnets inside can rust and weaken. Testing of the rollers is recommended be carried out every two years. Caution should be taken during use, as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where metal separation is crucial.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their magnetic capacity, neodymium magnets provide the following advantages:

  • They virtually do not lose strength, because even after 10 years, the decline in efficiency is only ~1% (based on calculations),
  • They show exceptional resistance to demagnetization from outside magnetic sources,
  • Because of the brilliant layer of silver, the component looks aesthetically refined,
  • The outer field strength of the magnet shows remarkable magnetic properties,
  • Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • The ability for accurate shaping as well as adjustment to custom needs – neodymium magnets can be manufactured in many forms and dimensions, which enhances their versatility in applications,
  • Significant impact in modern technologies – they find application in HDDs, rotating machines, clinical machines or even sophisticated instruments,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in tiny dimensions, which makes them ideal in miniature devices

Disadvantages of magnetic elements:

  • They may fracture when subjected to a strong impact. If the magnets are exposed to external force, we recommend in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks while also reinforces its overall strength,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to damp air can degrade. Therefore, for outdoor applications, we advise waterproof types made of non-metallic composites,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing complex structures directly in the magnet,
  • Safety concern linked to microscopic shards may arise, when consumed by mistake, which is important in the protection of children. It should also be noted that small elements from these assemblies may interfere with diagnostics once in the system,
  • High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which may limit large-scale applications

Caution with Neodymium Magnets

Keep neodymium magnets away from people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

 Keep neodymium magnets far from youngest children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets are the most powerful magnets ever invented. Their strength can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Neodymium magnets will jump and also touch together within a radius of several to almost 10 cm from each other.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Magnets made of neodymium are noted for their fragility, which can cause them to shatter.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Keep neodymium magnets away from GPS and smartphones.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Warning!

So you are aware of why neodymium magnets are so dangerous, read the article titled How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98