SM 32x275 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130376
GTIN: 5906301813248
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
275 mm
Weight
1475 g
824.10 ZŁ with VAT / pcs + price for transport
670.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure what to buy?
Give us a call
+48 888 99 98 98
otherwise drop us a message through
our online form
the contact form page.
Parameters as well as shape of magnets can be analyzed using our
our magnetic calculator.
Orders submitted before 14:00 will be dispatched today!
SM 32x275 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Besides their stability, neodymium magnets are valued for these benefits:
- They virtually do not lose power, because even after ten years, the decline in efficiency is only ~1% (according to literature),
- They show superior resistance to demagnetization from outside magnetic sources,
- In other words, due to the metallic gold coating, the magnet obtains an stylish appearance,
- They have very high magnetic induction on the surface of the magnet,
- With the right combination of compounds, they reach increased thermal stability, enabling operation at or above 230°C (depending on the design),
- With the option for customized forming and personalized design, these magnets can be produced in multiple shapes and sizes, greatly improving engineering flexibility,
- Key role in modern technologies – they find application in hard drives, electric drives, clinical machines as well as high-tech tools,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, while occupying minimal space,
Disadvantages of magnetic elements:
- They are fragile when subjected to a heavy impact. If the magnets are exposed to mechanical hits, we recommend in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks and additionally increases its overall durability,
- Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- They rust in a humid environment, especially when used outside, we recommend using encapsulated magnets, such as those made of polymer,
- The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is restricted,
- Safety concern related to magnet particles may arise, when consumed by mistake, which is crucial in the health of young users. Additionally, minuscule fragments from these magnets might complicate medical imaging once in the system,
- In cases of large-volume purchasing, neodymium magnet cost may be a barrier,
Magnetic strength at its maximum – what affects it?
The given holding capacity of the magnet means the highest holding force, calculated in the best circumstances, that is:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a smooth surface
- in conditions of no clearance
- in a perpendicular direction of force
- at room temperature
Determinants of lifting force in real conditions
In practice, the holding capacity of a magnet is affected by these factors, from crucial to less important:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was tested on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, in contrast under parallel forces the lifting capacity is smaller. In addition, even a slight gap {between} the magnet’s surface and the plate decreases the load capacity.
Exercise Caution with Neodymium Magnets
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
The magnet is coated with nickel - be careful if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their power can surprise you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
Neodymium magnets can become demagnetized at high temperatures.
Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Neodymium magnets should not be in the vicinity youngest children.
Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Never bring neodymium magnets close to a phone and GPS.
Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.
Magnets will jump and also touch together within a distance of several to around 10 cm from each other.
Magnets made of neodymium are highly susceptible to damage, leading to shattering.
Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.
Pay attention!
To raise awareness of why neodymium magnets are so dangerous, see the article titled How dangerous are strong neodymium magnets?.
