MP 25x7.5/4.5x5 / N38 - ring magnet
ring magnet
Catalog no 030194
GTIN/EAN: 5906301812111
Diameter
25 mm [±0,1 mm]
internal diameter Ø
7.5/4.5 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
17.81 g
Magnetization Direction
↑ axial
Load capacity
7.72 kg / 75.69 N
Magnetic Induction
230.20 mT / 2302 Gs
Coating
[NiCuNi] Nickel
8.00 ZŁ with VAT / pcs + price for transport
6.50 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us now
+48 888 99 98 98
or contact us using
request form
through our site.
Strength along with appearance of a neodymium magnet can be calculated using our
power calculator.
Same-day shipping for orders placed before 14:00.
Physical properties - MP 25x7.5/4.5x5 / N38 - ring magnet
Specification / characteristics - MP 25x7.5/4.5x5 / N38 - ring magnet
| properties | values |
|---|---|
| Cat. no. | 030194 |
| GTIN/EAN | 5906301812111 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter | 25 mm [±0,1 mm] |
| internal diameter Ø | 7.5/4.5 mm [±0,1 mm] |
| Height | 5 mm [±0,1 mm] |
| Weight | 17.81 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 7.72 kg / 75.69 N |
| Magnetic Induction ~ ? | 230.20 mT / 2302 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical analysis of the assembly - report
The following values represent the result of a mathematical analysis. Values are based on models for the class Nd2Fe14B. Real-world conditions might slightly deviate from the simulation results. Please consider these data as a supplementary guide during assembly planning.
Table 1: Static pull force (force vs gap) - power drop
MP 25x7.5/4.5x5 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
1995 Gs
199.5 mT
|
7.72 kg / 17.02 lbs
7720.0 g / 75.7 N
|
medium risk |
| 1 mm |
1906 Gs
190.6 mT
|
7.05 kg / 15.54 lbs
7049.4 g / 69.2 N
|
medium risk |
| 2 mm |
1793 Gs
179.3 mT
|
6.24 kg / 13.75 lbs
6236.8 g / 61.2 N
|
medium risk |
| 3 mm |
1664 Gs
166.4 mT
|
5.37 kg / 11.84 lbs
5368.9 g / 52.7 N
|
medium risk |
| 5 mm |
1385 Gs
138.5 mT
|
3.72 kg / 8.21 lbs
3722.8 g / 36.5 N
|
medium risk |
| 10 mm |
788 Gs
78.8 mT
|
1.20 kg / 2.65 lbs
1203.8 g / 11.8 N
|
safe |
| 15 mm |
437 Gs
43.7 mT
|
0.37 kg / 0.82 lbs
370.3 g / 3.6 N
|
safe |
| 20 mm |
253 Gs
25.3 mT
|
0.12 kg / 0.27 lbs
124.5 g / 1.2 N
|
safe |
| 30 mm |
101 Gs
10.1 mT
|
0.02 kg / 0.04 lbs
19.8 g / 0.2 N
|
safe |
| 50 mm |
27 Gs
2.7 mT
|
0.00 kg / 0.00 lbs
1.4 g / 0.0 N
|
safe |
Table 2: Shear capacity (vertical surface)
MP 25x7.5/4.5x5 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.54 kg / 3.40 lbs
1544.0 g / 15.1 N
|
| 1 mm | Stal (~0.2) |
1.41 kg / 3.11 lbs
1410.0 g / 13.8 N
|
| 2 mm | Stal (~0.2) |
1.25 kg / 2.75 lbs
1248.0 g / 12.2 N
|
| 3 mm | Stal (~0.2) |
1.07 kg / 2.37 lbs
1074.0 g / 10.5 N
|
| 5 mm | Stal (~0.2) |
0.74 kg / 1.64 lbs
744.0 g / 7.3 N
|
| 10 mm | Stal (~0.2) |
0.24 kg / 0.53 lbs
240.0 g / 2.4 N
|
| 15 mm | Stal (~0.2) |
0.07 kg / 0.16 lbs
74.0 g / 0.7 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
24.0 g / 0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Wall mounting (sliding) - vertical pull
MP 25x7.5/4.5x5 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
2.32 kg / 5.11 lbs
2316.0 g / 22.7 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.54 kg / 3.40 lbs
1544.0 g / 15.1 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.77 kg / 1.70 lbs
772.0 g / 7.6 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
3.86 kg / 8.51 lbs
3860.0 g / 37.9 N
|
Table 4: Steel thickness (saturation) - sheet metal selection
MP 25x7.5/4.5x5 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.77 kg / 1.70 lbs
772.0 g / 7.6 N
|
| 1 mm |
|
1.93 kg / 4.25 lbs
1930.0 g / 18.9 N
|
| 2 mm |
|
3.86 kg / 8.51 lbs
3860.0 g / 37.9 N
|
| 3 mm |
|
5.79 kg / 12.76 lbs
5790.0 g / 56.8 N
|
| 5 mm |
|
7.72 kg / 17.02 lbs
7720.0 g / 75.7 N
|
| 10 mm |
|
7.72 kg / 17.02 lbs
7720.0 g / 75.7 N
|
| 11 mm |
|
7.72 kg / 17.02 lbs
7720.0 g / 75.7 N
|
| 12 mm |
|
7.72 kg / 17.02 lbs
7720.0 g / 75.7 N
|
Table 5: Working in heat (material behavior) - thermal limit
MP 25x7.5/4.5x5 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.72 kg / 17.02 lbs
7720.0 g / 75.7 N
|
OK |
| 40 °C | -2.2% |
7.55 kg / 16.65 lbs
7550.2 g / 74.1 N
|
OK |
| 60 °C | -4.4% |
7.38 kg / 16.27 lbs
7380.3 g / 72.4 N
|
|
| 80 °C | -6.6% |
7.21 kg / 15.90 lbs
7210.5 g / 70.7 N
|
|
| 100 °C | -28.8% |
5.50 kg / 12.12 lbs
5496.6 g / 53.9 N
|
Table 6: Two magnets (repulsion) - forces in the system
MP 25x7.5/4.5x5 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
9.91 kg / 21.84 lbs
3 484 Gs
|
1.49 kg / 3.28 lbs
1486 g / 14.6 N
|
N/A |
| 1 mm |
9.51 kg / 20.96 lbs
3 909 Gs
|
1.43 kg / 3.14 lbs
1426 g / 14.0 N
|
8.56 kg / 18.87 lbs
~0 Gs
|
| 2 mm |
9.05 kg / 19.94 lbs
3 813 Gs
|
1.36 kg / 2.99 lbs
1357 g / 13.3 N
|
8.14 kg / 17.95 lbs
~0 Gs
|
| 3 mm |
8.54 kg / 18.83 lbs
3 705 Gs
|
1.28 kg / 2.82 lbs
1281 g / 12.6 N
|
7.69 kg / 16.94 lbs
~0 Gs
|
| 5 mm |
7.45 kg / 16.42 lbs
3 460 Gs
|
1.12 kg / 2.46 lbs
1117 g / 11.0 N
|
6.70 kg / 14.78 lbs
~0 Gs
|
| 10 mm |
4.78 kg / 10.53 lbs
2 771 Gs
|
0.72 kg / 1.58 lbs
717 g / 7.0 N
|
4.30 kg / 9.48 lbs
~0 Gs
|
| 20 mm |
1.54 kg / 3.41 lbs
1 576 Gs
|
0.23 kg / 0.51 lbs
232 g / 2.3 N
|
1.39 kg / 3.06 lbs
~0 Gs
|
| 50 mm |
0.06 kg / 0.13 lbs
312 Gs
|
0.01 kg / 0.02 lbs
9 g / 0.1 N
|
0.05 kg / 0.12 lbs
~0 Gs
|
| 60 mm |
0.03 kg / 0.06 lbs
202 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 70 mm |
0.01 kg / 0.03 lbs
138 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.02 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.01 lbs
97 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.01 lbs
71 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
54 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Safety (HSE) (implants) - precautionary measures
MP 25x7.5/4.5x5 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 9.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 7.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 6.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 4.5 cm |
| Car key | 50 Gs (5.0 mT) | 4.0 cm |
| Payment card | 400 Gs (40.0 mT) | 2.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.5 cm |
Table 8: Collisions (kinetic energy) - collision effects
MP 25x7.5/4.5x5 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
22.95 km/h
(6.38 m/s)
|
0.36 J | |
| 30 mm |
36.43 km/h
(10.12 m/s)
|
0.91 J | |
| 50 mm |
46.96 km/h
(13.04 m/s)
|
1.52 J | |
| 100 mm |
66.40 km/h
(18.44 m/s)
|
3.03 J |
Table 9: Surface protection spec
MP 25x7.5/4.5x5 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Pc)
MP 25x7.5/4.5x5 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 9 759 Mx | 97.6 µWb |
| Pc Coefficient | 0.25 | Low (Flat) |
Table 11: Underwater work (magnet fishing)
MP 25x7.5/4.5x5 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 7.72 kg | Standard |
| Water (riverbed) |
8.84 kg
(+1.12 kg buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Caution: On a vertical wall, the magnet holds just a fraction of its max power.
2. Steel thickness impact
*Thin steel (e.g. 0.5mm PC case) significantly weakens the holding force.
3. Power loss vs temp
*For N38 material, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.25
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other products
Pros as well as cons of rare earth magnets.
Pros
- They have constant strength, and over nearly 10 years their attraction force decreases symbolically – ~1% (in testing),
- They show high resistance to demagnetization induced by external magnetic fields,
- By covering with a shiny layer of gold, the element has an aesthetic look,
- Neodymium magnets generate maximum magnetic induction on a small area, which increases force concentration,
- Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their form) at temperatures up to 230°C and above...
- Considering the potential of flexible shaping and adaptation to individualized requirements, NdFeB magnets can be created in a broad palette of forms and dimensions, which amplifies use scope,
- Key role in electronics industry – they are commonly used in mass storage devices, motor assemblies, diagnostic systems, as well as other advanced devices.
- Thanks to their power density, small magnets offer high operating force, in miniature format,
Cons
- To avoid cracks under impact, we recommend using special steel housings. Such a solution protects the magnet and simultaneously increases its durability.
- NdFeB magnets lose power when exposed to high temperatures. After reaching 80°C, many of them experience permanent weakening of strength (a factor is the shape as well as dimensions of the magnet). We offer magnets specially adapted to work at temperatures up to 230°C marked [AH], which are extremely resistant to heat
- They oxidize in a humid environment - during use outdoors we suggest using waterproof magnets e.g. in rubber, plastic
- We recommend a housing - magnetic mechanism, due to difficulties in producing nuts inside the magnet and complicated shapes.
- Possible danger related to microscopic parts of magnets are risky, when accidentally swallowed, which becomes key in the context of child safety. Furthermore, small elements of these devices are able to complicate diagnosis medical in case of swallowing.
- With large orders the cost of neodymium magnets is economically unviable,
Lifting parameters
Maximum magnetic pulling force – what it depends on?
- using a sheet made of low-carbon steel, acting as a ideal flux conductor
- possessing a massiveness of minimum 10 mm to avoid saturation
- with a surface free of scratches
- without the slightest air gap between the magnet and steel
- during detachment in a direction perpendicular to the plane
- in temp. approx. 20°C
Lifting capacity in real conditions – factors
- Clearance – the presence of foreign body (paint, tape, gap) acts as an insulator, which lowers power steeply (even by 50% at 0.5 mm).
- Pull-off angle – remember that the magnet has greatest strength perpendicularly. Under sliding down, the capacity drops significantly, often to levels of 20-30% of the maximum value.
- Base massiveness – too thin plate does not accept the full field, causing part of the power to be escaped to the other side.
- Steel type – mild steel gives the best results. Alloy steels lower magnetic permeability and holding force.
- Plate texture – smooth surfaces guarantee perfect abutment, which improves field saturation. Rough surfaces weaken the grip.
- Temperature influence – high temperature reduces pulling force. Exceeding the limit temperature can permanently demagnetize the magnet.
Lifting capacity testing was performed on plates with a smooth surface of optimal thickness, under perpendicular forces, in contrast under parallel forces the load capacity is reduced by as much as 5 times. Moreover, even a small distance between the magnet’s surface and the plate lowers the lifting capacity.
Safety rules for work with NdFeB magnets
GPS Danger
Navigation devices and mobile phones are highly sensitive to magnetism. Close proximity with a powerful NdFeB magnet can permanently damage the sensors in your phone.
Demagnetization risk
Do not overheat. NdFeB magnets are susceptible to temperature. If you need operation above 80°C, look for special high-temperature series (H, SH, UH).
Combustion hazard
Fire warning: Rare earth powder is highly flammable. Do not process magnets without safety gear as this risks ignition.
Crushing force
Mind your fingers. Two large magnets will snap together immediately with a force of massive weight, destroying everything in their path. Exercise extreme caution!
Keep away from computers
Equipment safety: Neodymium magnets can damage data carriers and sensitive devices (pacemakers, hearing aids, timepieces).
Conscious usage
Use magnets with awareness. Their immense force can shock even experienced users. Be vigilant and respect their power.
Skin irritation risks
Studies show that the nickel plating (the usual finish) is a common allergen. For allergy sufferers, prevent direct skin contact and choose encased magnets.
Adults only
These products are not intended for children. Accidental ingestion of multiple magnets may result in them attracting across intestines, which constitutes a severe health hazard and necessitates urgent medical intervention.
Pacemakers
Life threat: Neodymium magnets can deactivate pacemakers and defibrillators. Stay away if you have medical devices.
Risk of cracking
Despite the nickel coating, neodymium is delicate and cannot withstand shocks. Avoid impacts, as the magnet may shatter into sharp, dangerous pieces.
