tel: +48 22 499 98 98

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our proposal. Practically all magnesy neodymowe in our store are available for immediate purchase (see the list). Check out the magnet pricing for more details see the magnet price list

Magnets for water searching F300 GOLD

Where to purchase powerful neodymium magnet? Holders with magnets in solid and airtight steel enclosure are ideally suited for use in difficult climate conditions, including during rain and snow see...

magnetic holders

Holders with magnets can be applied to enhance manufacturing, underwater exploration, or finding space rocks made of ore see...

Order is shipped on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 38x12 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010060

GTIN: 5906301810599

0

Diameter Ø [±0,1 mm]

38 mm

Height [±0,1 mm]

12 mm

Weight

102.07 g

Magnetization Direction

↑ axial

Load capacity

25.21 kg / 247.23 N

Magnetic Induction

331.00 mT

Coating

[NiCuNi] nickel

32.10 with VAT / pcs + price for transport

26.10 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
26.10 ZŁ
32.10 ZŁ
price from 30 pcs
24.53 ZŁ
30.17 ZŁ
price from 100 pcs
22.71 ZŁ
27.93 ZŁ

Hunting for a discount?

Call us +48 888 99 98 98 if you prefer let us know through contact form the contact form page.
Weight along with shape of neodymium magnets can be verified using our modular calculator.

Orders submitted before 14:00 will be dispatched today!

MW 38x12 / N38 - cylindrical magnet

Specification/characteristics MW 38x12 / N38 - cylindrical magnet
properties
values
Cat. no.
010060
GTIN
5906301810599
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
38 mm [±0,1 mm]
Height
12 mm [±0,1 mm]
Weight
102.07 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
25.21 kg / 247.23 N
Magnetic Induction ~ ?
331.00 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets i.e. MW 38x12 / N38 are magnets created of neodymium in a cylindrical shape. They are known for their extremely powerful magnetic properties, which outperform ordinary ferrite magnets. Thanks to their power, they are often employed in products that need powerful holding. The standard temperature resistance of such magnets is 80 degrees C, but for cylindrical magnets, this temperature rises with their height. Moreover, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to enhance their durability to corrosion. The shape of a cylinder is also one of the most popular among neodymium magnets. The magnet named MW 38x12 / N38 and a magnetic force 25.21 kg weighs only 102.07 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, represent the strongest known material for magnet production. The technology of their production is complicated and includes melting special neodymium alloys with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets are made available for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a coating of nickel to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, and also in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of purchasing of cylindrical neodymium magnets, several enterprises offer such products. One of the suggested suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to visit the site for the latest information as well as promotions, and before visiting, we recommend calling.
Due to their strength, cylindrical neodymium magnets are very practical in many applications, they can also pose certain risk. Due to their significant magnetic power, they can pull metallic objects with uncontrolled force, which can lead to crushing skin as well as other surfaces, especially fingers. Do not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, thus they are coated with a thin protective layer. Generally, although they are handy, one should handle them carefully.
Neodymium magnets, with the formula neodymium-iron-boron, are currently the strongest available magnets on the market. They are produced through a advanced sintering process, which involves melting specific alloys of neodymium with other metals and then forming and thermal processing. Their powerful magnetic strength comes from the unique production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often coated with coatings, such as epoxy, to shield them from environmental factors and prolong their durability. Temperatures exceeding 130°C can result in a reduction of their magnetic properties, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may forfeit their magnetic strength.
A cylindrical neodymium magnet of class N52 and N50 is a strong and extremely powerful magnetic product designed as a cylinder, providing high force and universal applicability. Very good price, fast shipping, durability and versatility.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their remarkable pulling force, neodymium magnets offer the following advantages:

  • They do not lose their magnetism, even after approximately 10 years – the loss of strength is only ~1% (according to tests),
  • Their ability to resist magnetic interference from external fields is among the best,
  • By applying a shiny layer of silver, the element gains a modern look,
  • They exhibit elevated levels of magnetic induction near the outer area of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • Thanks to the flexibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in diverse shapes and sizes, which expands their application range,
  • Key role in modern technologies – they are utilized in data storage devices, electric drives, diagnostic apparatus as well as sophisticated instruments,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in tiny dimensions, which makes them ideal in compact constructions

Disadvantages of NdFeB magnets:

  • They may fracture when subjected to a heavy impact. If the magnets are exposed to shocks, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from cracks and additionally reinforces its overall robustness,
  • Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a moist environment, especially when used outside, we recommend using moisture-resistant magnets, such as those made of non-metallic materials,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing holes directly in the magnet,
  • Possible threat related to magnet particles may arise, when consumed by mistake, which is notable in the family environments. It should also be noted that miniature parts from these assemblies may disrupt scanning when ingested,
  • High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications

Best holding force of the magnet in ideal parameterswhat contributes to it?

The given pulling force of the magnet corresponds to the maximum force, calculated in ideal conditions, specifically:

  • with mild steel, serving as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • in a perpendicular direction of force
  • under standard ambient temperature

What influences lifting capacity in practice

In practice, the holding capacity of a magnet is conditioned by the following aspects, from crucial to less important:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined using a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular pulling force, in contrast under attempts to slide the magnet the lifting capacity is smaller. In addition, even a slight gap {between} the magnet’s surface and the plate reduces the lifting capacity.

Handle Neodymium Magnets Carefully

Neodymium magnets can become demagnetized at high temperatures.

In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.

Neodymium magnets are particularly delicate, resulting in shattering.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Keep neodymium magnets away from GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

  Do not give neodymium magnets to children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Magnets will crack or alternatively crumble with uncontrolled connecting to each other. Remember not to approach them to each other or have them firmly in hands at a distance less than 10 cm.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Neodymium magnets are the most powerful magnets ever created, and their power can surprise you.

To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Safety precautions!

In order for you to know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous very powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98