MPL 15x2x30 / N38 - lamellar magnet
lamellar magnet
Catalog no 020121
GTIN/EAN: 5906301811275
length
15 mm [±0,1 mm]
Width
2 mm [±0,1 mm]
Height
30 mm [±0,1 mm]
Weight
6.75 g
Magnetization Direction
→ diametrical
Load capacity
0.68 kg / 6.68 N
Magnetic Induction
614.34 mT / 6143 Gs
Coating
[NiCuNi] Nickel
4.75 ZŁ with VAT / pcs + price for transport
3.86 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Contact us by phone
+48 22 499 98 98
alternatively drop us a message using
our online form
the contact section.
Strength as well as structure of magnets can be estimated using our
modular calculator.
Orders submitted before 14:00 will be dispatched today!
Technical - MPL 15x2x30 / N38 - lamellar magnet
Specification / characteristics - MPL 15x2x30 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020121 |
| GTIN/EAN | 5906301811275 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 15 mm [±0,1 mm] |
| Width | 2 mm [±0,1 mm] |
| Height | 30 mm [±0,1 mm] |
| Weight | 6.75 g |
| Magnetization Direction | → diametrical |
| Load capacity ~ ? | 0.68 kg / 6.68 N |
| Magnetic Induction ~ ? | 614.34 mT / 6143 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical analysis of the assembly - data
The following data are the direct effect of a mathematical simulation. Results were calculated on models for the material Nd2Fe14B. Real-world conditions may differ from theoretical values. Treat these calculations as a reference point when designing systems.
Table 1: Static force (pull vs distance) - power drop
MPL 15x2x30 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
6128 Gs
612.8 mT
|
0.68 kg / 1.50 lbs
680.0 g / 6.7 N
|
safe |
| 1 mm |
3036 Gs
303.6 mT
|
0.17 kg / 0.37 lbs
166.8 g / 1.6 N
|
safe |
| 2 mm |
1736 Gs
173.6 mT
|
0.05 kg / 0.12 lbs
54.5 g / 0.5 N
|
safe |
| 3 mm |
1150 Gs
115.0 mT
|
0.02 kg / 0.05 lbs
23.9 g / 0.2 N
|
safe |
| 5 mm |
623 Gs
62.3 mT
|
0.01 kg / 0.02 lbs
7.0 g / 0.1 N
|
safe |
| 10 mm |
218 Gs
21.8 mT
|
0.00 kg / 0.00 lbs
0.9 g / 0.0 N
|
safe |
| 15 mm |
103 Gs
10.3 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
safe |
| 20 mm |
58 Gs
5.8 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
safe |
| 30 mm |
24 Gs
2.4 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
| 50 mm |
7 Gs
0.7 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
Table 2: Sliding load (wall)
MPL 15x2x30 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.14 kg / 0.30 lbs
136.0 g / 1.3 N
|
| 1 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
34.0 g / 0.3 N
|
| 2 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 3 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 5 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (sliding) - behavior on slippery surfaces
MPL 15x2x30 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.20 kg / 0.45 lbs
204.0 g / 2.0 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.14 kg / 0.30 lbs
136.0 g / 1.3 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.07 kg / 0.15 lbs
68.0 g / 0.7 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.34 kg / 0.75 lbs
340.0 g / 3.3 N
|
Table 4: Material efficiency (saturation) - power losses
MPL 15x2x30 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.07 kg / 0.15 lbs
68.0 g / 0.7 N
|
| 1 mm |
|
0.17 kg / 0.37 lbs
170.0 g / 1.7 N
|
| 2 mm |
|
0.34 kg / 0.75 lbs
340.0 g / 3.3 N
|
| 3 mm |
|
0.51 kg / 1.12 lbs
510.0 g / 5.0 N
|
| 5 mm |
|
0.68 kg / 1.50 lbs
680.0 g / 6.7 N
|
| 10 mm |
|
0.68 kg / 1.50 lbs
680.0 g / 6.7 N
|
| 11 mm |
|
0.68 kg / 1.50 lbs
680.0 g / 6.7 N
|
| 12 mm |
|
0.68 kg / 1.50 lbs
680.0 g / 6.7 N
|
Table 5: Working in heat (material behavior) - resistance threshold
MPL 15x2x30 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
0.68 kg / 1.50 lbs
680.0 g / 6.7 N
|
OK |
| 40 °C | -2.2% |
0.67 kg / 1.47 lbs
665.0 g / 6.5 N
|
OK |
| 60 °C | -4.4% |
0.65 kg / 1.43 lbs
650.1 g / 6.4 N
|
OK |
| 80 °C | -6.6% |
0.64 kg / 1.40 lbs
635.1 g / 6.2 N
|
|
| 100 °C | -28.8% |
0.48 kg / 1.07 lbs
484.2 g / 4.7 N
|
Table 6: Magnet-Magnet interaction (repulsion) - field collision
MPL 15x2x30 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Sliding Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
6.95 kg / 15.31 lbs
6 152 Gs
|
1.04 kg / 2.30 lbs
1042 g / 10.2 N
|
N/A |
| 1 mm |
3.45 kg / 7.62 lbs
8 643 Gs
|
0.52 kg / 1.14 lbs
518 g / 5.1 N
|
3.11 kg / 6.85 lbs
~0 Gs
|
| 2 mm |
1.70 kg / 3.76 lbs
6 071 Gs
|
0.26 kg / 0.56 lbs
256 g / 2.5 N
|
1.53 kg / 3.38 lbs
~0 Gs
|
| 3 mm |
0.93 kg / 2.05 lbs
4 482 Gs
|
0.14 kg / 0.31 lbs
139 g / 1.4 N
|
0.84 kg / 1.84 lbs
~0 Gs
|
| 5 mm |
0.36 kg / 0.79 lbs
2 788 Gs
|
0.05 kg / 0.12 lbs
54 g / 0.5 N
|
0.32 kg / 0.71 lbs
~0 Gs
|
| 10 mm |
0.07 kg / 0.16 lbs
1 247 Gs
|
0.01 kg / 0.02 lbs
11 g / 0.1 N
|
0.06 kg / 0.14 lbs
~0 Gs
|
| 20 mm |
0.01 kg / 0.02 lbs
435 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
71 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
47 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
33 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
24 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
18 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
14 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Hazards (implants) - precautionary measures
MPL 15x2x30 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 6.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 4.5 cm |
| Timepiece | 20 Gs (2.0 mT) | 3.5 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 2.5 cm |
| Remote | 50 Gs (5.0 mT) | 2.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Dynamics (cracking risk) - warning
MPL 15x2x30 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
10.13 km/h
(2.81 m/s)
|
0.03 J | |
| 30 mm |
17.53 km/h
(4.87 m/s)
|
0.08 J | |
| 50 mm |
22.63 km/h
(6.29 m/s)
|
0.13 J | |
| 100 mm |
32.01 km/h
(8.89 m/s)
|
0.27 J |
Table 9: Anti-corrosion coating durability
MPL 15x2x30 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Flux)
MPL 15x2x30 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 2 210 Mx | 22.1 µWb |
| Pc Coefficient | 1.54 | High (Stable) |
Table 11: Hydrostatics and buoyancy
MPL 15x2x30 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 0.68 kg | Standard |
| Water (riverbed) |
0.78 kg
(+0.10 kg buoyancy gain)
|
+14.5% |
1. Shear force
*Warning: On a vertical surface, the magnet holds just approx. 20-30% of its max power.
2. Efficiency vs thickness
*Thin metal sheet (e.g. 0.5mm PC case) severely reduces the holding force.
3. Heat tolerance
*For N38 material, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 1.54
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Check out more proposals
Advantages and disadvantages of rare earth magnets.
Benefits
- They have unchanged lifting capacity, and over around 10 years their performance decreases symbolically – ~1% (in testing),
- Neodymium magnets are exceptionally resistant to magnetic field loss caused by external magnetic fields,
- The use of an aesthetic finish of noble metals (nickel, gold, silver) causes the element to look better,
- The surface of neodymium magnets generates a concentrated magnetic field – this is one of their assets,
- Neodymium magnets are characterized by extremely high magnetic induction on the magnet surface and can work (depending on the form) even at a temperature of 230°C or more...
- Thanks to versatility in designing and the capacity to adapt to complex applications,
- Universal use in high-tech industry – they are used in hard drives, motor assemblies, medical devices, as well as modern systems.
- Relatively small size with high pulling force – neodymium magnets offer strong magnetic field in compact dimensions, which enables their usage in small systems
Limitations
- Susceptibility to cracking is one of their disadvantages. Upon intense impact they can break. We recommend keeping them in a steel housing, which not only secures them against impacts but also increases their durability
- Neodymium magnets lose strength when exposed to high temperatures. After reaching 80°C, many of them experience permanent weakening of strength (a factor is the shape and dimensions of the magnet). We offer magnets specially adapted to work at temperatures up to 230°C marked [AH], which are extremely resistant to heat
- Due to the susceptibility of magnets to corrosion in a humid environment, we suggest using waterproof magnets made of rubber, plastic or other material immune to moisture, in case of application outdoors
- Limited possibility of making nuts in the magnet and complicated forms - recommended is casing - magnet mounting.
- Health risk resulting from small fragments of magnets are risky, when accidentally swallowed, which is particularly important in the context of child health protection. Furthermore, small elements of these magnets are able to disrupt the diagnostic process medical after entering the body.
- Higher cost of purchase is one of the disadvantages compared to ceramic magnets, especially in budget applications
Pull force analysis
Optimal lifting capacity of a neodymium magnet – what affects it?
- using a base made of high-permeability steel, serving as a ideal flux conductor
- with a cross-section of at least 10 mm
- with an ideally smooth touching surface
- with zero gap (no impurities)
- during detachment in a direction vertical to the mounting surface
- at conditions approx. 20°C
Practical lifting capacity: influencing factors
- Gap (between the magnet and the metal), because even a microscopic clearance (e.g. 0.5 mm) can cause a reduction in lifting capacity by up to 50% (this also applies to paint, corrosion or debris).
- Force direction – catalog parameter refers to pulling vertically. When slipping, the magnet holds significantly lower power (typically approx. 20-30% of maximum force).
- Plate thickness – insufficiently thick sheet causes magnetic saturation, causing part of the flux to be lost to the other side.
- Steel type – low-carbon steel attracts best. Higher carbon content lower magnetic permeability and holding force.
- Surface finish – ideal contact is possible only on smooth steel. Any scratches and bumps create air cushions, reducing force.
- Thermal factor – high temperature weakens magnetic field. Too high temperature can permanently demagnetize the magnet.
Lifting capacity testing was carried out on a smooth plate of optimal thickness, under perpendicular forces, however under parallel forces the lifting capacity is smaller. Additionally, even a minimal clearance between the magnet’s surface and the plate reduces the holding force.
Safe handling of neodymium magnets
Handling rules
Exercise caution. Neodymium magnets act from a distance and connect with huge force, often quicker than you can react.
Phone sensors
Remember: rare earth magnets generate a field that confuses sensitive sensors. Maintain a separation from your mobile, device, and GPS.
Skin irritation risks
Certain individuals experience a hypersensitivity to Ni, which is the standard coating for NdFeB magnets. Frequent touching can result in a rash. We recommend use safety gloves.
Thermal limits
Do not overheat. NdFeB magnets are sensitive to heat. If you need operation above 80°C, inquire about HT versions (H, SH, UH).
Protective goggles
Beware of splinters. Magnets can explode upon uncontrolled impact, launching shards into the air. Wear goggles.
Serious injuries
Large magnets can smash fingers instantly. Under no circumstances place your hand between two strong magnets.
Threat to electronics
Avoid bringing magnets near a purse, laptop, or TV. The magnetic field can irreversibly ruin these devices and erase data from cards.
Life threat
Warning for patients: Strong magnetic fields affect electronics. Maintain at least 30 cm distance or ask another person to handle the magnets.
Danger to the youngest
Neodymium magnets are not suitable for play. Accidental ingestion of several magnets may result in them pinching intestinal walls, which poses a critical condition and necessitates urgent medical intervention.
Do not drill into magnets
Powder produced during machining of magnets is self-igniting. Avoid drilling into magnets unless you are an expert.
