e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnets Nd2Fe14B - our store's offer. Practically all "neodymium magnets" in our store are in stock for immediate delivery (see the list). Check out the magnet pricing for more details check the magnet price list

Magnet for treasure hunters F200 GOLD

Where to buy powerful neodymium magnet? Holders with magnets in airtight and durable steel casing are excellent for use in variable and difficult climate conditions, including during rain and snow read...

magnetic holders

Holders with magnets can be applied to enhance production processes, underwater exploration, or searching for meteorites from gold more...

Shipping is shipped on the day of purchase by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 33x30 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010058

GTIN: 5906301810575

0

Diameter Ø [±0,1 mm]

33 mm

Height [±0,1 mm]

30 mm

Weight

192.44 g

Magnetization Direction

↑ axial

Load capacity

54.74 kg / 536.82 N

Magnetic Induction

543.05 mT

Coating

[NiCuNi] nickel

80.00 with VAT / pcs + price for transport

65.04 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
65.04 ZŁ
80.00 ZŁ
price from 10 pcs
61.14 ZŁ
75.20 ZŁ
price from 39 pcs
57.24 ZŁ
70.40 ZŁ

Need help making a decision?

Pick up the phone and ask +48 888 99 98 98 otherwise let us know using our online form through our site.
Force and structure of magnets can be checked with our force calculator.

Order by 14:00 and we’ll ship today!

MW 33x30 / N38 - cylindrical magnet

Specification/characteristics MW 33x30 / N38 - cylindrical magnet
properties
values
Cat. no.
010058
GTIN
5906301810575
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
33 mm [±0,1 mm]
Height
30 mm [±0,1 mm]
Weight
192.44 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
54.74 kg / 536.82 N
Magnetic Induction ~ ?
543.05 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets i.e. MW 33x30 / N38 are magnets made of neodymium in a cylinder form. They are known for their very strong magnetic properties, which outperform ordinary iron magnets. Thanks to their power, they are frequently employed in products that need powerful holding. The typical temperature resistance of such magnets is 80°C, but for magnets in a cylindrical form, this temperature increases with the growth of the magnet. Moreover, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to increase their durability to corrosion. The shape of a cylinder is as well one of the most popular among neodymium magnets. The magnet designated MW 33x30 / N38 and a magnetic force 54.74 kg weighs only 192.44 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, represent the strongest known material for magnet production. The technology of their production is complicated and includes sintering special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets are made available for use in varied applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a coating of gold to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, and also in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, located in Ożarów Mazowiecki, the address can be found directly in the contact tab. It's always worth check the site for the current information and offers, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are very practical in many applications, they can also pose certain dangers. Due to their strong magnetic power, they can attract metallic objects with significant force, which can lead to crushing skin and other surfaces, especially fingers. One should not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Moreover, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. In short, although they are very useful, one should handle them with due caution.
Neodymium magnets, with the formula Nd2Fe14B, are presently the strong magnets on the market. They are produced through a advanced sintering process, which involves melting special alloys of neodymium with additional metals and then shaping and heat treating. Their amazing magnetic strength comes from the unique production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often covered with coatings, such as epoxy, to preserve them from external factors and prolong their durability. High temperatures exceeding 130°C can result in a loss of their magnetic strength, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic strength.
A cylindrical neodymium magnet in classes N52 and N50 is a strong and powerful magnetic piece in the form of a cylinder, featuring strong holding power and broad usability. Good price, availability, durability and versatility.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their durability, neodymium magnets are valued for these benefits:

  • They virtually do not lose strength, because even after ten years, the decline in efficiency is only ~1% (in laboratory conditions),
  • Their ability to resist magnetic interference from external fields is among the best,
  • Thanks to the polished finish and silver coating, they have an aesthetic appearance,
  • Magnetic induction on the surface of these magnets is notably high,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • Thanks to the freedom in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in different geometries, which increases their usage potential,
  • Wide application in advanced technical fields – they serve a purpose in computer drives, electromechanical systems, clinical machines along with high-tech tools,
  • Thanks to their power density, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of magnetic elements:

  • They may fracture when subjected to a strong impact. If the magnets are exposed to physical collisions, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks , and at the same time strengthens its overall durability,
  • High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a moist environment. For outdoor use, we recommend using moisture-resistant magnets, such as those made of plastic,
  • Limited ability to create internal holes in the magnet – the use of a housing is recommended,
  • Potential hazard due to small fragments may arise, in case of ingestion, which is notable in the family environments. It should also be noted that miniature parts from these assemblies might disrupt scanning once in the system,
  • In cases of large-volume purchasing, neodymium magnet cost is a challenge,

Exercise Caution with Neodymium Magnets

Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can shock you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

Neodymium magnets are extremely delicate, they easily break and can crumble.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

  Neodymium magnets should not be around children.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets will crack or alternatively crumble with careless connecting to each other. Remember not to approach them to each other or have them firmly in hands at a distance less than 10 cm.

Be careful!

In order for you to know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous very strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98