tel: +48 888 99 98 98

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our proposal. Practically all magnesy neodymowe in our store are available for immediate purchase (check the list). See the magnet pricing for more details check the magnet price list

Magnets for water searching F400 GOLD

Where to purchase powerful neodymium magnet? Holders with magnets in airtight and durable steel casing are ideally suited for use in variable and difficult weather conditions, including during rain and snow read...

magnets with holders

Holders with magnets can be used to enhance manufacturing, underwater exploration, or searching for space rocks from gold see...

Order is shipped on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 33x30 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010058

GTIN: 5906301810575

0

Diameter Ø [±0,1 mm]

33 mm

Height [±0,1 mm]

30 mm

Weight

192.44 g

Magnetization Direction

↑ axial

Load capacity

54.74 kg / 536.82 N

Magnetic Induction

543.05 mT

Coating

[NiCuNi] nickel

52.89 with VAT / pcs + price for transport

43.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
43.00 ZŁ
52.89 ZŁ
price from 20 pcs
40.42 ZŁ
49.72 ZŁ
price from 60 pcs
37.84 ZŁ
46.54 ZŁ

Do you have questions?

Call us +48 888 99 98 98 if you prefer get in touch via request form our website.
Specifications as well as appearance of a neodymium magnet can be tested using our force calculator.

Same-day shipping for orders placed before 14:00.

MW 33x30 / N38 - cylindrical magnet

Specification/characteristics MW 33x30 / N38 - cylindrical magnet
properties
values
Cat. no.
010058
GTIN
5906301810575
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
33 mm [±0,1 mm]
Height
30 mm [±0,1 mm]
Weight
192.44 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
54.74 kg / 536.82 N
Magnetic Induction ~ ?
543.05 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets i.e. MW 33x30 / N38 are magnets made of neodymium in a cylinder form. They are valued for their extremely powerful magnetic properties, which exceed traditional ferrite magnets. Thanks to their power, they are often employed in devices that require powerful holding. The standard temperature resistance of such magnets is 80 degrees C, but for cylindrical magnets, this temperature rises with their height. Moreover, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their durability to corrosion. The shape of a cylinder is also very popular among neodymium magnets. The magnet designated MW 33x30 / N38 and a magnetic lifting capacity of 54.74 kg has a weight of only 192.44 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, represent the strongest known material for magnet production. The technology of their production is complicated and includes melting special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets are made available for use in many applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a thin layer of gold-nickel to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, and also in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the suggested suppliers is our company Dhit, located in Ożarów Mazowiecki, the address is available directly in the contact tab. It's always worth check the website for the current information and offers, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are very practical in many applications, they can also pose certain risk. Because of their significant magnetic power, they can attract metallic objects with great force, which can lead to crushing skin or other surfaces, especially be careful with fingers. One should not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Moreover, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. Generally, although they are handy, they should be handled with due caution.
Neodymium magnets, with the formula Nd2Fe14B, are currently the strong magnets on the market. They are produced through a complicated sintering process, which involves fusing special alloys of neodymium with other metals and then shaping and thermal processing. Their powerful magnetic strength comes from the unique production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often covered with coatings, such as epoxy, to preserve them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can cause a loss of their magnetic properties, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic properties.
A neodymium magnet of class N52 and N50 is a powerful and highly strong magnetic product shaped like a cylinder, providing strong holding power and universal applicability. Competitive price, fast shipping, stability and multi-functionality.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their pulling strength, neodymium magnets provide the following advantages:

  • They have unchanged lifting capacity, and over around 10 years their performance decreases symbolically – ~1% (in testing),
  • Their ability to resist magnetic interference from external fields is impressive,
  • The use of a polished gold surface provides a refined finish,
  • They possess significant magnetic force measurable at the magnet’s surface,
  • Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • Thanks to the possibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in different geometries, which broadens their usage potential,
  • Important function in cutting-edge sectors – they are used in HDDs, electromechanical systems, medical equipment and sophisticated instruments,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in small dimensions, which allows for use in compact constructions

Disadvantages of magnetic elements:

  • They may fracture when subjected to a strong impact. If the magnets are exposed to shocks, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks and additionally increases its overall strength,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is common to use sealed magnets made of rubber for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing threads directly in the magnet,
  • Safety concern related to magnet particles may arise, if ingested accidentally, which is crucial in the health of young users. Moreover, small elements from these devices may complicate medical imaging once in the system,
  • Due to expensive raw materials, their cost is relatively high,

Maximum magnetic pulling forcewhat affects it?

The given pulling force of the magnet represents the maximum force, measured under optimal conditions, that is:

  • with mild steel, used as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a smooth surface
  • with no separation
  • under perpendicular detachment force
  • under standard ambient temperature

Lifting capacity in practice – influencing factors

The lifting capacity of a magnet depends on in practice the following factors, ordered from most important to least significant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on a smooth plate of suitable thickness, under a perpendicular pulling force, in contrast under shearing force the holding force is lower. In addition, even a small distance {between} the magnet and the plate decreases the load capacity.

Handle with Care: Neodymium Magnets

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnets are incredibly fragile, they easily fall apart and can become damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets are the most powerful magnets ever invented. Their strength can surprise you.

Familiarize yourself with our information to properly handle these magnets and avoid significant injuries to your body and prevent damage to the magnets.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

  Do not give neodymium magnets to children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Never bring neodymium magnets close to a phone and GPS.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets should not be near people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets will attract each other within a distance of several to about 10 cm from each other. Remember not to put fingers between magnets or alternatively in their path when attract. Depending on how huge the neodymium magnets are, they can lead to a cut or a fracture.

Be careful!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98