MW 33x30 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010058
GTIN: 5906301810575
Diameter Ø [±0,1 mm]
33 mm
Height [±0,1 mm]
30 mm
Weight
192.44 g
Magnetization Direction
↑ axial
Load capacity
54.74 kg / 536.82 N
Magnetic Induction
543.05 mT
Coating
[NiCuNi] nickel
52.89 ZŁ with VAT / pcs + price for transport
43.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Do you have questions?
Call us
+48 888 99 98 98
if you prefer get in touch via
request form
our website.
Specifications as well as appearance of a neodymium magnet can be tested using our
force calculator.
Same-day shipping for orders placed before 14:00.
MW 33x30 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, although neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a thin layer of gold-nickel to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.
In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, and also in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often covered with coatings, such as epoxy, to preserve them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can cause a loss of their magnetic properties, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic properties.
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their pulling strength, neodymium magnets provide the following advantages:
- They have unchanged lifting capacity, and over around 10 years their performance decreases symbolically – ~1% (in testing),
- Their ability to resist magnetic interference from external fields is impressive,
- The use of a polished gold surface provides a refined finish,
- They possess significant magnetic force measurable at the magnet’s surface,
- Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
- Thanks to the possibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in different geometries, which broadens their usage potential,
- Important function in cutting-edge sectors – they are used in HDDs, electromechanical systems, medical equipment and sophisticated instruments,
- Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in small dimensions, which allows for use in compact constructions
Disadvantages of magnetic elements:
- They may fracture when subjected to a strong impact. If the magnets are exposed to shocks, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks and additionally increases its overall strength,
- Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Due to corrosion risk in humid conditions, it is common to use sealed magnets made of rubber for outdoor use,
- Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing threads directly in the magnet,
- Safety concern related to magnet particles may arise, if ingested accidentally, which is crucial in the health of young users. Moreover, small elements from these devices may complicate medical imaging once in the system,
- Due to expensive raw materials, their cost is relatively high,
Maximum magnetic pulling force – what affects it?
The given pulling force of the magnet represents the maximum force, measured under optimal conditions, that is:
- with mild steel, used as a magnetic flux conductor
- of a thickness of at least 10 mm
- with a smooth surface
- with no separation
- under perpendicular detachment force
- under standard ambient temperature
Lifting capacity in practice – influencing factors
The lifting capacity of a magnet depends on in practice the following factors, ordered from most important to least significant:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was performed on a smooth plate of suitable thickness, under a perpendicular pulling force, in contrast under shearing force the holding force is lower. In addition, even a small distance {between} the magnet and the plate decreases the load capacity.
Handle with Care: Neodymium Magnets
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Neodymium magnets are incredibly fragile, they easily fall apart and can become damaged.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Neodymium magnets are the most powerful magnets ever invented. Their strength can surprise you.
Familiarize yourself with our information to properly handle these magnets and avoid significant injuries to your body and prevent damage to the magnets.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Do not give neodymium magnets to children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Never bring neodymium magnets close to a phone and GPS.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets should not be near people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
Magnets will attract each other within a distance of several to about 10 cm from each other. Remember not to put fingers between magnets or alternatively in their path when attract. Depending on how huge the neodymium magnets are, they can lead to a cut or a fracture.
Be careful!
Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.
