MW 33x30 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010058
GTIN/EAN: 5906301810575
Diameter Ø
33 mm [±0,1 mm]
Height
30 mm [±0,1 mm]
Weight
192.44 g
Magnetization Direction
↑ axial
Load capacity
35.84 kg / 351.54 N
Magnetic Induction
543.05 mT / 5430 Gs
Coating
[NiCuNi] Nickel
52.89 ZŁ with VAT / pcs + price for transport
43.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Pick up the phone and ask
+48 888 99 98 98
otherwise get in touch via
form
our website.
Specifications as well as shape of neodymium magnets can be checked with our
modular calculator.
Same-day shipping for orders placed before 14:00.
Technical of the product - MW 33x30 / N38 - cylindrical magnet
Specification / characteristics - MW 33x30 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010058 |
| GTIN/EAN | 5906301810575 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 33 mm [±0,1 mm] |
| Height | 30 mm [±0,1 mm] |
| Weight | 192.44 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 35.84 kg / 351.54 N |
| Magnetic Induction ~ ? | 543.05 mT / 5430 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering simulation of the product - report
Presented values represent the direct effect of a engineering simulation. Values were calculated on models for the class Nd2Fe14B. Operational performance might slightly deviate from the simulation results. Use these calculations as a preliminary roadmap during assembly planning.
Table 1: Static pull force (force vs distance) - interaction chart
MW 33x30 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
5429 Gs
542.9 mT
|
35.84 kg / 79.01 lbs
35840.0 g / 351.6 N
|
crushing |
| 1 mm |
5098 Gs
509.8 mT
|
31.60 kg / 69.67 lbs
31600.1 g / 310.0 N
|
crushing |
| 2 mm |
4765 Gs
476.5 mT
|
27.60 kg / 60.85 lbs
27601.7 g / 270.8 N
|
crushing |
| 3 mm |
4436 Gs
443.6 mT
|
23.93 kg / 52.76 lbs
23930.4 g / 234.8 N
|
crushing |
| 5 mm |
3810 Gs
381.0 mT
|
17.65 kg / 38.91 lbs
17650.2 g / 173.1 N
|
crushing |
| 10 mm |
2518 Gs
251.8 mT
|
7.71 kg / 17.00 lbs
7709.5 g / 75.6 N
|
warning |
| 15 mm |
1650 Gs
165.0 mT
|
3.31 kg / 7.30 lbs
3312.1 g / 32.5 N
|
warning |
| 20 mm |
1105 Gs
110.5 mT
|
1.49 kg / 3.27 lbs
1485.1 g / 14.6 N
|
low risk |
| 30 mm |
546 Gs
54.6 mT
|
0.36 kg / 0.80 lbs
361.9 g / 3.5 N
|
low risk |
| 50 mm |
184 Gs
18.4 mT
|
0.04 kg / 0.09 lbs
41.4 g / 0.4 N
|
low risk |
Table 2: Slippage capacity (vertical surface)
MW 33x30 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
7.17 kg / 15.80 lbs
7168.0 g / 70.3 N
|
| 1 mm | Stal (~0.2) |
6.32 kg / 13.93 lbs
6320.0 g / 62.0 N
|
| 2 mm | Stal (~0.2) |
5.52 kg / 12.17 lbs
5520.0 g / 54.2 N
|
| 3 mm | Stal (~0.2) |
4.79 kg / 10.55 lbs
4786.0 g / 47.0 N
|
| 5 mm | Stal (~0.2) |
3.53 kg / 7.78 lbs
3530.0 g / 34.6 N
|
| 10 mm | Stal (~0.2) |
1.54 kg / 3.40 lbs
1542.0 g / 15.1 N
|
| 15 mm | Stal (~0.2) |
0.66 kg / 1.46 lbs
662.0 g / 6.5 N
|
| 20 mm | Stal (~0.2) |
0.30 kg / 0.66 lbs
298.0 g / 2.9 N
|
| 30 mm | Stal (~0.2) |
0.07 kg / 0.16 lbs
72.0 g / 0.7 N
|
| 50 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
Table 3: Wall mounting (shearing) - behavior on slippery surfaces
MW 33x30 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
10.75 kg / 23.70 lbs
10752.0 g / 105.5 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
7.17 kg / 15.80 lbs
7168.0 g / 70.3 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
3.58 kg / 7.90 lbs
3584.0 g / 35.2 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
17.92 kg / 39.51 lbs
17920.0 g / 175.8 N
|
Table 4: Steel thickness (substrate influence) - sheet metal selection
MW 33x30 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.79 kg / 3.95 lbs
1792.0 g / 17.6 N
|
| 1 mm |
|
4.48 kg / 9.88 lbs
4480.0 g / 43.9 N
|
| 2 mm |
|
8.96 kg / 19.75 lbs
8960.0 g / 87.9 N
|
| 3 mm |
|
13.44 kg / 29.63 lbs
13440.0 g / 131.8 N
|
| 5 mm |
|
22.40 kg / 49.38 lbs
22400.0 g / 219.7 N
|
| 10 mm |
|
35.84 kg / 79.01 lbs
35840.0 g / 351.6 N
|
| 11 mm |
|
35.84 kg / 79.01 lbs
35840.0 g / 351.6 N
|
| 12 mm |
|
35.84 kg / 79.01 lbs
35840.0 g / 351.6 N
|
Table 5: Thermal stability (stability) - thermal limit
MW 33x30 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
35.84 kg / 79.01 lbs
35840.0 g / 351.6 N
|
OK |
| 40 °C | -2.2% |
35.05 kg / 77.28 lbs
35051.5 g / 343.9 N
|
OK |
| 60 °C | -4.4% |
34.26 kg / 75.54 lbs
34263.0 g / 336.1 N
|
OK |
| 80 °C | -6.6% |
33.47 kg / 73.80 lbs
33474.6 g / 328.4 N
|
|
| 100 °C | -28.8% |
25.52 kg / 56.26 lbs
25518.1 g / 250.3 N
|
Table 6: Magnet-Magnet interaction (repulsion) - field range
MW 33x30 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
155.43 kg / 342.66 lbs
5 974 Gs
|
23.31 kg / 51.40 lbs
23314 g / 228.7 N
|
N/A |
| 1 mm |
146.19 kg / 322.29 lbs
10 531 Gs
|
21.93 kg / 48.34 lbs
21928 g / 215.1 N
|
131.57 kg / 290.06 lbs
~0 Gs
|
| 2 mm |
137.04 kg / 302.12 lbs
10 196 Gs
|
20.56 kg / 45.32 lbs
20556 g / 201.7 N
|
123.34 kg / 271.91 lbs
~0 Gs
|
| 3 mm |
128.20 kg / 282.64 lbs
9 862 Gs
|
19.23 kg / 42.40 lbs
19230 g / 188.6 N
|
115.38 kg / 254.37 lbs
~0 Gs
|
| 5 mm |
111.55 kg / 245.93 lbs
9 199 Gs
|
16.73 kg / 36.89 lbs
16733 g / 164.2 N
|
100.40 kg / 221.34 lbs
~0 Gs
|
| 10 mm |
76.54 kg / 168.75 lbs
7 620 Gs
|
11.48 kg / 25.31 lbs
11481 g / 112.6 N
|
68.89 kg / 151.87 lbs
~0 Gs
|
| 20 mm |
33.43 kg / 73.71 lbs
5 036 Gs
|
5.02 kg / 11.06 lbs
5015 g / 49.2 N
|
30.09 kg / 66.34 lbs
~0 Gs
|
| 50 mm |
3.08 kg / 6.78 lbs
1 528 Gs
|
0.46 kg / 1.02 lbs
462 g / 4.5 N
|
2.77 kg / 6.11 lbs
~0 Gs
|
| 60 mm |
1.57 kg / 3.46 lbs
1 091 Gs
|
0.24 kg / 0.52 lbs
235 g / 2.3 N
|
1.41 kg / 3.11 lbs
~0 Gs
|
| 70 mm |
0.85 kg / 1.87 lbs
803 Gs
|
0.13 kg / 0.28 lbs
127 g / 1.2 N
|
0.76 kg / 1.69 lbs
~0 Gs
|
| 80 mm |
0.48 kg / 1.07 lbs
606 Gs
|
0.07 kg / 0.16 lbs
73 g / 0.7 N
|
0.44 kg / 0.96 lbs
~0 Gs
|
| 90 mm |
0.29 kg / 0.64 lbs
468 Gs
|
0.04 kg / 0.10 lbs
43 g / 0.4 N
|
0.26 kg / 0.57 lbs
~0 Gs
|
| 100 mm |
0.18 kg / 0.40 lbs
369 Gs
|
0.03 kg / 0.06 lbs
27 g / 0.3 N
|
0.16 kg / 0.36 lbs
~0 Gs
|
Table 7: Hazards (electronics) - warnings
MW 33x30 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 20.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 16.0 cm |
| Timepiece | 20 Gs (2.0 mT) | 12.5 cm |
| Mobile device | 40 Gs (4.0 mT) | 9.5 cm |
| Remote | 50 Gs (5.0 mT) | 9.0 cm |
| Payment card | 400 Gs (40.0 mT) | 4.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 3.0 cm |
Table 8: Impact energy (cracking risk) - warning
MW 33x30 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
15.50 km/h
(4.31 m/s)
|
1.78 J | |
| 30 mm |
23.99 km/h
(6.66 m/s)
|
4.27 J | |
| 50 mm |
30.80 km/h
(8.55 m/s)
|
7.04 J | |
| 100 mm |
43.52 km/h
(12.09 m/s)
|
14.06 J |
Table 9: Anti-corrosion coating durability
MW 33x30 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Flux)
MW 33x30 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 47 447 Mx | 474.5 µWb |
| Pc Coefficient | 0.85 | High (Stable) |
Table 11: Underwater work (magnet fishing)
MW 33x30 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 35.84 kg | Standard |
| Water (riverbed) |
41.04 kg
(+5.20 kg buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Note: On a vertical surface, the magnet holds just ~20% of its perpendicular strength.
2. Plate thickness effect
*Thin metal sheet (e.g. 0.5mm PC case) drastically limits the holding force.
3. Temperature resistance
*For standard magnets, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.85
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other offers
Advantages and disadvantages of rare earth magnets.
Benefits
- They virtually do not lose strength, because even after 10 years the decline in efficiency is only ~1% (based on calculations),
- They are extremely resistant to demagnetization induced by external magnetic fields,
- The use of an refined layer of noble metals (nickel, gold, silver) causes the element to be more visually attractive,
- Magnetic induction on the working part of the magnet remains extremely intense,
- Through (appropriate) combination of ingredients, they can achieve high thermal strength, enabling action at temperatures reaching 230°C and above...
- Possibility of precise creating as well as adapting to individual requirements,
- Key role in advanced technology sectors – they are used in magnetic memories, motor assemblies, precision medical tools, also complex engineering applications.
- Thanks to concentrated force, small magnets offer high operating force, with minimal size,
Weaknesses
- At strong impacts they can crack, therefore we recommend placing them in strong housings. A metal housing provides additional protection against damage and increases the magnet's durability.
- We warn that neodymium magnets can reduce their strength at high temperatures. To prevent this, we advise our specialized [AH] magnets, which work effectively even at 230°C.
- Due to the susceptibility of magnets to corrosion in a humid environment, we recommend using waterproof magnets made of rubber, plastic or other material resistant to moisture, in case of application outdoors
- Limited possibility of making nuts in the magnet and complicated forms - recommended is casing - magnet mounting.
- Health risk related to microscopic parts of magnets pose a threat, in case of ingestion, which becomes key in the context of child health protection. Furthermore, small elements of these magnets can complicate diagnosis medical in case of swallowing.
- Due to neodymium price, their price is relatively high,
Pull force analysis
Magnetic strength at its maximum – what contributes to it?
- on a base made of structural steel, perfectly concentrating the magnetic flux
- whose transverse dimension reaches at least 10 mm
- with an ground touching surface
- without the slightest insulating layer between the magnet and steel
- under perpendicular application of breakaway force (90-degree angle)
- in neutral thermal conditions
Practical lifting capacity: influencing factors
- Distance – existence of any layer (rust, dirt, air) acts as an insulator, which lowers power rapidly (even by 50% at 0.5 mm).
- Angle of force application – maximum parameter is obtained only during pulling at a 90° angle. The force required to slide of the magnet along the plate is usually several times smaller (approx. 1/5 of the lifting capacity).
- Substrate thickness – to utilize 100% power, the steel must be adequately massive. Thin sheet restricts the lifting capacity (the magnet "punches through" it).
- Steel grade – the best choice is pure iron steel. Stainless steels may have worse magnetic properties.
- Plate texture – ground elements guarantee perfect abutment, which improves force. Rough surfaces reduce efficiency.
- Temperature influence – high temperature reduces magnetic field. Too high temperature can permanently damage the magnet.
Lifting capacity was determined with the use of a polished steel plate of suitable thickness (min. 20 mm), under vertically applied force, however under shearing force the holding force is lower. Moreover, even a slight gap between the magnet and the plate lowers the lifting capacity.
Safe handling of neodymium magnets
Fire risk
Combustion risk: Neodymium dust is explosive. Do not process magnets without safety gear as this risks ignition.
Handling guide
Before starting, check safety instructions. Uncontrolled attraction can destroy the magnet or injure your hand. Be predictive.
Bone fractures
Risk of injury: The pulling power is so great that it can result in hematomas, pinching, and broken bones. Protective gloves are recommended.
No play value
Absolutely keep magnets away from children. Choking hazard is high, and the consequences of magnets clamping inside the body are life-threatening.
Heat sensitivity
Avoid heat. Neodymium magnets are sensitive to heat. If you need operation above 80°C, look for special high-temperature series (H, SH, UH).
Life threat
People with a heart stimulator must maintain an safe separation from magnets. The magnetism can interfere with the functioning of the implant.
Keep away from electronics
A powerful magnetic field negatively affects the operation of compasses in smartphones and navigation systems. Keep magnets near a smartphone to avoid damaging the sensors.
Nickel coating and allergies
Some people experience a sensitization to nickel, which is the typical protective layer for NdFeB magnets. Frequent touching might lead to skin redness. We recommend use protective gloves.
Magnets are brittle
Despite the nickel coating, the material is delicate and not impact-resistant. Do not hit, as the magnet may crumble into sharp, dangerous pieces.
Threat to electronics
Avoid bringing magnets near a purse, computer, or TV. The magnetic field can destroy these devices and erase data from cards.
