tel: +48 22 499 98 98

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our offer. Practically all magnesy on our website are in stock for immediate purchase (see the list). Check out the magnet price list for more details see the magnet price list

Magnets for searching F300 GOLD

Where to purchase strong magnet? Holders with magnets in airtight and durable steel casing are excellent for use in variable and difficult weather conditions, including in the rain and snow see more...

magnets with holders

Holders with magnets can be used to facilitate production, exploring underwater areas, or finding meteors made of metal see...

We promise to ship your order on the same day before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 33x10 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010057

GTIN: 5906301810568

5

Diameter Ø [±0,1 mm]

33 mm

Height [±0,1 mm]

10 mm

Weight

64.15 g

Magnetization Direction

↑ axial

Load capacity

18.25 kg / 178.97 N

Magnetic Induction

321.26 mT

Coating

[NiCuNi] nickel

26.52 with VAT / pcs + price for transport

21.56 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
21.56 ZŁ
26.52 ZŁ
price from 30 pcs
20.27 ZŁ
24.93 ZŁ
price from 120 pcs
18.97 ZŁ
23.34 ZŁ

Not sure about your choice?

Give us a call +48 888 99 98 98 or let us know through our online form through our site.
Specifications as well as structure of neodymium magnets can be verified using our modular calculator.

Orders submitted before 14:00 will be dispatched today!

MW 33x10 / N38 - cylindrical magnet

Specification/characteristics MW 33x10 / N38 - cylindrical magnet
properties
values
Cat. no.
010057
GTIN
5906301810568
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
33 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
64.15 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
18.25 kg / 178.97 N
Magnetic Induction ~ ?
321.26 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets min. MW 33x10 / N38 are magnets made of neodymium in a cylinder form. They are known for their extremely powerful magnetic properties, which exceed ordinary ferrite magnets. Because of their power, they are often employed in products that require powerful holding. The standard temperature resistance of such magnets is 80°C, but for magnets in a cylindrical form, this temperature increases with the growth of the magnet. Additionally, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to enhance their resistance to corrosion. The cylindrical shape is as well one of the most popular among neodymium magnets. The magnet designated MW 33x10 / N38 and a magnetic strength 18.25 kg has a weight of only 64.15 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, represent the strongest known material for magnet production. Their production process is complicated and includes sintering special neodymium alloys with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a thin layer of gold-nickel to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of purchasing of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, located in Ożarów Mazowiecki, the address can be found directly in the contact tab. It is recommended to check the website for the latest information and promotions, and before visiting, we recommend calling.
Due to their strength, cylindrical neodymium magnets are practical in many applications, they can also pose certain risk. Because of their strong magnetic power, they can attract metallic objects with uncontrolled force, which can lead to damaging skin and other surfaces, especially hands. Do not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. In short, although they are handy, they should be handled carefully.
Neodymium magnets, with the formula neodymium-iron-boron, are currently the strong magnets on the market. They are produced through a complicated sintering process, which involves fusing special alloys of neodymium with other metals and then forming and heat treating. Their powerful magnetic strength comes from the specific production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often coated with coatings, such as gold, to protect them from environmental factors and prolong their durability. Temperatures exceeding 130°C can cause a deterioration of their magnetic strength, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may forfeit their magnetic strength.
A cylindrical neodymium magnet of class N50 and N52 is a powerful and strong metallic component designed as a cylinder, that offers strong holding power and versatile application. Very good price, 24h delivery, ruggedness and multi-functionality.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their strong magnetism, neodymium magnets have these key benefits:

  • They retain their magnetic properties for almost ten years – the loss is just ~1% (based on simulations),
  • They protect against demagnetization induced by external magnetic fields very well,
  • In other words, due to the shiny silver coating, the magnet obtains an professional appearance,
  • They possess strong magnetic force measurable at the magnet’s surface,
  • Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
  • Thanks to the possibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in different geometries, which broadens their application range,
  • Wide application in new technology industries – they are used in computer drives, rotating machines, medical equipment or even technologically developed systems,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, in miniature format,

Disadvantages of magnetic elements:

  • They are prone to breaking when subjected to a powerful impact. If the magnets are exposed to external force, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time strengthens its overall strength,
  • They lose strength at extreme temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to wet conditions can oxidize. Therefore, for outdoor applications, it's best to use waterproof types made of non-metallic composites,
  • The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is difficult,
  • Safety concern linked to microscopic shards may arise, especially if swallowed, which is crucial in the context of child safety. Additionally, minuscule fragments from these products may disrupt scanning once in the system,
  • In cases of large-volume purchasing, neodymium magnet cost may be a barrier,

Magnetic strength at its maximum – what contributes to it?

The given lifting capacity of the magnet represents the maximum lifting force, determined in ideal conditions, specifically:

  • with mild steel, used as a magnetic flux conductor
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • in conditions of no clearance
  • under perpendicular detachment force
  • at room temperature

Practical aspects of lifting capacity – factors

The lifting capacity of a magnet is influenced by in practice key elements, ordered from most important to least significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on plates with a smooth surface of suitable thickness, under a perpendicular pulling force, however under shearing force the lifting capacity is smaller. In addition, even a minimal clearance {between} the magnet and the plate reduces the load capacity.

Be Cautious with Neodymium Magnets

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

  Neodymium magnets should not be around children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets attract each other within a distance of several to around 10 cm from each other. Remember not to put fingers between magnets or alternatively in their path when they attract. Depending on how huge the neodymium magnets are, they can lead to a cut or alternatively a fracture.

Neodymium magnets can become demagnetized at high temperatures.

Despite the general resilience of magnets, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Neodymium magnets are the strongest, most remarkable magnets on the planet, and the surprising force between them can surprise you at first.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Neodymium magnetic are characterized by being fragile, which can cause them to crumble.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Exercise caution!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98