tel: +48 888 99 98 98

neodymium magnets

We offer blue color magnets Nd2Fe14B - our proposal. All "magnets" on our website are in stock for immediate delivery (check the list). Check out the magnet price list for more details see the magnet price list

Magnets for treasure hunters F400 GOLD

Where to purchase powerful magnet? Magnet holders in airtight, solid steel casing are ideally suited for use in difficult, demanding climate conditions, including in the rain and snow see more...

magnets with holders

Holders with magnets can be applied to improve production, underwater discoveries, or finding space rocks from gold more information...

Order is always shipped on the day of purchase before 2:00 PM on business days.

Dhit sp. z o.o.
Product available Ships today (order by 14:00)

MW 29x10 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010053

GTIN: 5906301810520

5

Diameter Ø [±0,1 mm]

29 mm

Height [±0,1 mm]

10 mm

Weight

49.54 g

Magnetization Direction

↑ axial

Load capacity

16.04 kg / 157.3 N

Magnetic Induction

351.88 mT

Coating

[NiCuNi] nickel

17.34 with VAT / pcs + price for transport

14.10 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
14.10 ZŁ
17.34 ZŁ
price from 50 pcs
13.25 ZŁ
16.30 ZŁ
price from 180 pcs
12.41 ZŁ
15.26 ZŁ

Hunting for a discount?

Call us now +48 22 499 98 98 alternatively let us know via request form the contact section.
Strength and structure of magnetic components can be reviewed with our force calculator.

Same-day shipping for orders placed before 14:00.

MW 29x10 / N38 - cylindrical magnet

Specification/characteristics MW 29x10 / N38 - cylindrical magnet
properties
values
Cat. no.
010053
GTIN
5906301810520
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
29 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
49.54 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
16.04 kg / 157.3 N
Magnetic Induction ~ ?
351.88 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Our cylinder magnets are made of sintered Neodymium-Iron-Boron (NdFeB). This guarantees huge pull force while maintaining compact dimensions. Model MW 29x10 / N38 has a pull force of approx. 16.04 kg. The cylindrical form makes them perfect for installing in sockets, generators and magnetic separators. The surface is protected by a Ni-Cu-Ni (Nickel-Copper-Nickel) coating.
We recommend installation by gluing into a hole with a slightly larger diameter (e.g. +0.1 mm clearance). Professional industrial adhesives are best, which are safe for the anti-corrosion layer. Do not hit the magnets, as neodymium is a ceramic sinter and is prone to chipping upon impact.
The magnet grade determines the pull force of the material. A higher value means more power for the same size. The universal option is N38, which provides good performance at a reasonable price. For projects requiring extreme strength, we recommend grade N52, which is the strongest commercially available sinter.
These products have a standard coating of Ni-Cu-Ni (Nickel-Copper-Nickel), which provides basic protection. This is not a hermetic barrier. In outdoor or wet conditions, the coating may be damaged, leading to rusting of the magnet. For such tasks, we recommend hermetic sealing or ordering a special version.
Cylindrical magnets are a key component of many modern machines. They are commonly used to build rotors in brushless motors and in filters catching metal filings. Additionally, due to their precise dimensions, they are indispensable in Hall effect sensors.
The maximum operating temperature for the standard version is 80°C (176°F). Above this value, the magnet loses its strength. For more demanding conditions (e.g. 120°C, 150°C, 200°C), we offer H, SH, or UH series on request. Please note that magnets are sensitive to rapid temperature changes.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their high retention, neodymium magnets are valued for these benefits:

  • They retain their attractive force for around 10 years – the drop is just ~1% (in theory),
  • Their ability to resist magnetic interference from external fields is impressive,
  • By applying a reflective layer of nickel, the element gains a clean look,
  • They have exceptional magnetic induction on the surface of the magnet,
  • Thanks to their enhanced temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
  • With the option for tailored forming and precise design, these magnets can be produced in numerous shapes and sizes, greatly improving engineering flexibility,
  • Important function in cutting-edge sectors – they find application in hard drives, electric drives, healthcare devices or even other advanced devices,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, with minimal size,

Disadvantages of NdFeB magnets:

  • They are fragile when subjected to a heavy impact. If the magnets are exposed to external force, it is advisable to use in a metal holder. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time enhances its overall resistance,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a moist environment, especially when used outside, we recommend using sealed magnets, such as those made of rubber,
  • The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is risky,
  • Health risk related to magnet particles may arise, when consumed by mistake, which is important in the context of child safety. Additionally, tiny components from these devices might interfere with diagnostics when ingested,
  • Due to expensive raw materials, their cost is relatively high,

Magnetic strength at its maximum – what affects it?

The given lifting capacity of the magnet represents the maximum lifting force, measured in a perfect environment, that is:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • with a thickness of minimum 10 mm
  • with a refined outer layer
  • with zero air gap
  • under perpendicular detachment force
  • at room temperature

What influences lifting capacity in practice

The lifting capacity of a magnet depends on in practice key elements, according to their importance:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured with the use of a steel plate with a smooth surface of suitable thickness (min. 20 mm), under perpendicular pulling force, however under attempts to slide the magnet the lifting capacity is smaller. In addition, even a small distance {between} the magnet’s surface and the plate lowers the lifting capacity.

Handle with Care: Neodymium Magnets

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

 It is important to keep neodymium magnets out of reach from children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

People with pacemakers are advised to avoid neodymium magnets.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets are generally resilient, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Magnets attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a major injury may occur. Depending on how large the neodymium magnets are, they can lead to a cut or alternatively a fracture.

Neodymium magnets are especially delicate, resulting in damage.

Neodymium magnets are characterized by significant fragility. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their strength can shock you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Caution!

So that know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous very powerful neodymium magnets.

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98