tel: +48 888 99 98 98

neodymium magnets

We provide yellow color magnets Nd2Fe14B - our proposal. All "magnets" in our store are in stock for immediate delivery (see the list). Check out the magnet pricing for more details check the magnet price list

Magnets for treasure hunters F200 GOLD

Where to purchase strong magnet? Magnet holders in airtight and durable enclosure are ideally suited for use in difficult weather, including snow and rain see more...

magnets with holders

Holders with magnets can be applied to facilitate production, exploring underwater areas, or finding meteors from gold more...

Enjoy shipping of your order on the same day by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 29x10 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010053

GTIN: 5906301810520

5

Diameter Ø [±0,1 mm]

29 mm

Height [±0,1 mm]

10 mm

Weight

49.54 g

Magnetization Direction

↑ axial

Load capacity

16.04 kg / 157.3 N

Magnetic Induction

351.88 mT

Coating

[NiCuNi] nickel

17.34 with VAT / pcs + price for transport

14.10 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
14.10 ZŁ
17.34 ZŁ
price from 50 pcs
13.25 ZŁ
16.30 ZŁ
price from 180 pcs
12.41 ZŁ
15.26 ZŁ

Can't decide what to choose?

Call us +48 22 499 98 98 if you prefer get in touch via request form through our site.
Force as well as shape of magnets can be checked with our our magnetic calculator.

Order by 14:00 and we’ll ship today!

MW 29x10 / N38 - cylindrical magnet

Specification/characteristics MW 29x10 / N38 - cylindrical magnet
properties
values
Cat. no.
010053
GTIN
5906301810520
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
29 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
49.54 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
16.04 kg / 157.3 N
Magnetic Induction ~ ?
351.88 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets min. MW 29x10 / N38 are magnets made of neodymium in a cylinder form. They are valued for their extremely powerful magnetic properties, which outperform traditional iron magnets. Thanks to their strength, they are frequently employed in products that need powerful holding. The standard temperature resistance of these magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature rises with the growth of the magnet. Moreover, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to enhance their resistance to corrosion. The cylindrical shape is also very popular among neodymium magnets. The magnet with the designation MW 29x10 / N38 with a magnetic strength 16.04 kg has a weight of only 49.54 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, represent the strongest known material for magnet production. Their production process is complicated and includes sintering special neodymium alloys along with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets are made available for use in varied applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a coating of epoxy to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires special caution during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
Regarding the purchase of cylindrical neodymium magnets, several enterprises offer such products. One of the suggested suppliers is our company Dhit, located in Ożarów Mazowiecki, the address can be found directly in the contact tab. It is recommended to visit the site for the latest information as well as promotions, and before visiting, please call.
Although, cylindrical neodymium magnets are very practical in various applications, they can also constitute certain risk. Because of their strong magnetic power, they can pull metallic objects with great force, which can lead to crushing skin and other surfaces, especially hands. Do not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, thus they are coated with a thin protective layer. In short, although they are very useful, one should handle them with due caution.
Neodymium magnets, with the formula neodymium-iron-boron, are presently the strong magnets on the market. They are produced through a advanced sintering process, which involves fusing specific alloys of neodymium with additional metals and then shaping and heat treating. Their unmatched magnetic strength comes from the specific production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often covered with coatings, such as silver, to shield them from environmental factors and prolong their durability. High temperatures exceeding 130°C can result in a loss of their magnetic properties, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may forfeit their magnetic properties.
A cylindrical neodymium magnet N50 and N52 is a powerful and strong metal object shaped like a cylinder, featuring high force and universal applicability. Very good price, 24h delivery, resistance and universal usability.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their exceptional magnetic power, neodymium magnets offer the following advantages:

  • They do not lose their magnetism, even after nearly 10 years – the decrease of power is only ~1% (according to tests),
  • They are very resistant to demagnetization caused by external field interference,
  • Thanks to the shiny finish and nickel coating, they have an visually attractive appearance,
  • The outer field strength of the magnet shows elevated magnetic properties,
  • Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
  • The ability for accurate shaping or customization to custom needs – neodymium magnets can be manufactured in multiple variants of geometries, which extends the scope of their use cases,
  • Important function in cutting-edge sectors – they are used in HDDs, rotating machines, clinical machines along with high-tech tools,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of rare earth magnets:

  • They can break when subjected to a sudden impact. If the magnets are exposed to external force, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from cracks , and at the same time enhances its overall robustness,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a damp environment. For outdoor use, we recommend using moisture-resistant magnets, such as those made of polymer,
  • Limited ability to create complex details in the magnet – the use of a housing is recommended,
  • Possible threat from tiny pieces may arise, if ingested accidentally, which is significant in the health of young users. Additionally, small elements from these assemblies can complicate medical imaging after being swallowed,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Magnetic strength at its maximum – what it depends on?

The given lifting capacity of the magnet corresponds to the maximum lifting force, measured in the best circumstances, namely:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • with zero air gap
  • under perpendicular detachment force
  • under standard ambient temperature

Lifting capacity in real conditions – factors

Practical lifting force is determined by factors, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined by applying a steel plate with a smooth surface of optimal thickness (min. 20 mm), under vertically applied force, in contrast under parallel forces the load capacity is reduced by as much as 5 times. In addition, even a slight gap {between} the magnet’s surface and the plate decreases the load capacity.

Safety Precautions

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Do not bring neodymium magnets close to GPS and smartphones.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are not recommended for people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.

Magnets will crack or alternatively crumble with careless connecting to each other. Remember not to move them to each other or hold them firmly in hands at a distance less than 10 cm.

Neodymium magnets are especially delicate, which leads to damage.

Neodymium magnets are fragile and will break if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are the most powerful magnets ever invented. Their strength can surprise you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Neodymium magnets generate strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Safety precautions!

So you are aware of why neodymium magnets are so dangerous, see the article titled How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98