tel: +48 888 99 98 98

neodymium magnets

We provide blue color magnets Nd2Fe14B - our offer. Practically all magnesy neodymowe on our website are available for immediate delivery (check the list). Check out the magnet pricing for more details see the magnet price list

Magnets for water searching F200 GOLD

Where to buy strong magnet? Magnetic holders in solid and airtight steel casing are excellent for use in difficult climate conditions, including snow and rain see...

magnetic holders

Holders with magnets can be used to enhance production processes, exploring underwater areas, or searching for meteorites made of ore see more...

Enjoy shipping of your order on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 29x10 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010053

GTIN: 5906301810520

5

Diameter Ø [±0,1 mm]

29 mm

Height [±0,1 mm]

10 mm

Weight

49.54 g

Magnetization Direction

↑ axial

Load capacity

16.04 kg / 157.3 N

Magnetic Induction

351.88 mT

Coating

[NiCuNi] nickel

17.00 with VAT / pcs + price for transport

13.82 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
13.82 ZŁ
17.00 ZŁ
price from 44 pcs
12.99 ZŁ
15.98 ZŁ
price from 181 pcs
12.16 ZŁ
14.96 ZŁ

Not sure where to buy?

Contact us by phone +48 888 99 98 98 otherwise drop us a message via form our website.
Lifting power along with form of a magnet can be verified on our force calculator.

Orders submitted before 14:00 will be dispatched today!

MW 29x10 / N38 - cylindrical magnet

Specification/characteristics MW 29x10 / N38 - cylindrical magnet
properties
values
Cat. no.
010053
GTIN
5906301810520
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
29 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
49.54 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
16.04 kg / 157.3 N
Magnetic Induction ~ ?
351.88 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets min. MW 29x10 / N38 are magnets made of neodymium in a cylinder form. They are valued for their extremely powerful magnetic properties, which exceed traditional iron magnets. Thanks to their strength, they are frequently employed in devices that require strong adhesion. The standard temperature resistance of these magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature rises with the growth of the magnet. Additionally, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their resistance to corrosion. The cylindrical shape is also one of the most popular among neodymium magnets. The magnet with the designation MW 29x10 / N38 and a magnetic force 16.04 kg weighs only 49.54 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, represent the strongest known material for magnet production. The technology of their production is complicated and includes sintering special neodymium alloys along with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets are made available for use in varied applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a coating of silver to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, as well as in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of purchasing of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address can be found directly in the contact tab. It's always worth check the site for the latest information as well as offers, and before visiting, please call.
Although, cylindrical neodymium magnets are very practical in many applications, they can also constitute certain risk. Because of their significant magnetic power, they can pull metallic objects with great force, which can lead to crushing skin as well as other surfaces, especially be careful with fingers. One should not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Moreover, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. In short, although they are very useful, they should be handled carefully.
Neodymium magnets, with the formula Nd2Fe14B, are presently the strong magnets on the market. They are produced through a complicated sintering process, which involves melting specific alloys of neodymium with other metals and then shaping and thermal processing. Their amazing magnetic strength comes from the exceptional production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often covered with thin coatings, such as epoxy, to shield them from external factors and extend their lifespan. High temperatures exceeding 130°C can result in a loss of their magnetic strength, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic properties.
A cylindrical magnet in classes N52 and N50 is a powerful and strong magnetic piece designed as a cylinder, featuring strong holding power and broad usability. Attractive price, 24h delivery, stability and versatility.

Advantages and disadvantages of neodymium magnets NdFeB.

Besides their durability, neodymium magnets are valued for these benefits:

  • They do not lose their power nearly ten years – the decrease of strength is only ~1% (theoretically),
  • Their ability to resist magnetic interference from external fields is impressive,
  • The use of a polished gold surface provides a smooth finish,
  • They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • The ability for precise shaping and adaptation to specific needs – neodymium magnets can be manufactured in many forms and dimensions, which amplifies their functionality across industries,
  • Important function in advanced technical fields – they serve a purpose in computer drives, electric drives, medical equipment and sophisticated instruments,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, with minimal size,

Disadvantages of neodymium magnets:

  • They may fracture when subjected to a heavy impact. If the magnets are exposed to external force, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks while also increases its overall durability,
  • High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to humidity can degrade. Therefore, for outdoor applications, we advise waterproof types made of coated materials,
  • Limited ability to create threads in the magnet – the use of a external casing is recommended,
  • Potential hazard related to magnet particles may arise, if ingested accidentally, which is important in the health of young users. It should also be noted that minuscule fragments from these devices can interfere with diagnostics once in the system,
  • High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications

Precautions with Neodymium Magnets

  Do not give neodymium magnets to children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium Magnets can attract to each other, pinch the skin, and cause significant injuries.

If you have a finger between or on the path of attracting magnets, there may be a serious cut or even a fracture.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets can become demagnetized at high temperatures.

Despite the fact that magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Keep neodymium magnets away from GPS and smartphones.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are the strongest magnets ever invented. Their power can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Keep neodymium magnets away from the wallet, computer, and TV.

Neodymium magnets produce strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Magnets made of neodymium are noted for their fragility, which can cause them to shatter.

Magnets made of neodymium are fragile and will break if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Exercise caution!

To raise awareness of why neodymium magnets are so dangerous, read the article titled How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98