tel: +48 22 499 98 98

neodymium magnets

We provide red color magnets Nd2Fe14B - our proposal. Practically all "neodymium magnets" on our website are available for immediate purchase (see the list). Check out the magnet price list for more details see the magnet price list

Magnets for water searching F200 GOLD

Where to buy powerful magnet? Magnetic holders in airtight, solid steel enclosure are ideally suited for use in challenging climate conditions, including in the rain and snow see...

magnets with holders

Magnetic holders can be applied to enhance production processes, underwater exploration, or searching for meteorites made of metal read...

We promise to ship your order on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o.
Product available Ships tomorrow

MW 29x10 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010053

GTIN: 5906301810520

5

Diameter Ø [±0,1 mm]

29 mm

Height [±0,1 mm]

10 mm

Weight

49.54 g

Magnetization Direction

↑ axial

Load capacity

16.04 kg / 157.3 N

Magnetic Induction

351.88 mT

Coating

[NiCuNi] nickel

17.34 with VAT / pcs + price for transport

14.10 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
14.10 ZŁ
17.34 ZŁ
price from 50 pcs
13.25 ZŁ
16.30 ZŁ
price from 180 pcs
12.41 ZŁ
15.26 ZŁ

Can't decide what to choose?

Contact us by phone +48 22 499 98 98 otherwise let us know using request form the contact form page.
Specifications along with structure of a magnet can be calculated on our force calculator.

Same-day processing for orders placed before 14:00.

MW 29x10 / N38 - cylindrical magnet

Specification/characteristics MW 29x10 / N38 - cylindrical magnet
properties
values
Cat. no.
010053
GTIN
5906301810520
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
29 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
49.54 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
16.04 kg / 157.3 N
Magnetic Induction ~ ?
351.88 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical magnets from this series are made of the strongest magnetic material in the world. This guarantees huge pull force while maintaining a small size. Model MW 29x10 / N38 has a pull force of approx. 16.04 kg. Their symmetrical shape makes them ideal for mounting in drilled holes, electric motors and magnetic separators. The surface is protected by a Ni-Cu-Ni (Nickel-Copper-Nickel) coating.
It is best to use adhesive to fix the magnet into a hole with a slightly larger diameter (e.g. +0.1 mm clearance). Professional industrial adhesives are best, which are safe for the anti-corrosion layer. Avoid press-fitting with force, as neodymium is a brittle material and can easily crack upon impact.
The grade symbol (e.g. N38, N52) defines the magnetic energy density of the material. The higher the number, the stronger the magnet for the same size. The market standard is N38, which provides an optimal price-to-power ratio. For projects requiring extreme strength, we recommend grade N52, which is the strongest commercially available sinter.
We use a protective plating of Ni-Cu-Ni (Nickel-Copper-Nickel), which protects in indoor conditions. However, they are not fully waterproof. During underwater use, the coating may be damaged, leading to corrosion and loss of power. For such tasks, we recommend hermetic sealing or ordering a special version.
Their wide application covers advanced technologies. They are utilized in electric drives and in magnetic separators for cleaning bulk products. Additionally, due to their precise dimensions, they are ideal for measuring systems and sensors.
These magnets retain their properties up to 80 degrees Celsius. Above this value, the magnet loses its strength. For work in hot environments (e.g. 120°C, 150°C, 200°C), ask about high-temperature versions (H, SH, UH). Please note that magnets are sensitive to rapid temperature changes.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their magnetic efficiency, neodymium magnets provide the following advantages:

  • They have constant strength, and over nearly 10 years their performance decreases symbolically – ~1% (in testing),
  • They remain magnetized despite exposure to magnetic surroundings,
  • By applying a bright layer of silver, the element gains a sleek look,
  • They have exceptional magnetic induction on the surface of the magnet,
  • Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • With the option for tailored forming and personalized design, these magnets can be produced in multiple shapes and sizes, greatly improving engineering flexibility,
  • Significant impact in new technology industries – they serve a purpose in data storage devices, electromechanical systems, diagnostic apparatus or even high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in small dimensions, which makes them ideal in miniature devices

Disadvantages of neodymium magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to shocks, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture and additionally increases its overall strength,
  • Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a wet environment. If exposed to rain, we recommend using sealed magnets, such as those made of polymer,
  • Limited ability to create threads in the magnet – the use of a mechanical support is recommended,
  • Potential hazard due to small fragments may arise, especially if swallowed, which is important in the protection of children. Moreover, minuscule fragments from these products have the potential to hinder health screening when ingested,
  • Due to the price of neodymium, their cost is considerably higher,

Maximum lifting force for a neodymium magnet – what affects it?

The given strength of the magnet represents the optimal strength, determined in the best circumstances, that is:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with no separation
  • under perpendicular detachment force
  • at room temperature

Practical aspects of lifting capacity – factors

In practice, the holding capacity of a magnet is affected by these factors, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was assessed by applying a polished steel plate of suitable thickness (min. 20 mm), under perpendicular detachment force, in contrast under parallel forces the lifting capacity is smaller. Additionally, even a small distance {between} the magnet’s surface and the plate reduces the load capacity.

Exercise Caution with Neodymium Magnets

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Magnets will crack or alternatively crumble with uncontrolled joining to each other. Remember not to move them to each other or hold them firmly in hands at a distance less than 10 cm.

Keep neodymium magnets away from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

 Maintain neodymium magnets far from children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Neodymium magnetic are incredibly delicate, they easily break and can become damaged.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are the strongest magnets ever created, and their strength can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Caution!

So that know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98