MW 29x10 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010053
GTIN: 5906301810520
Diameter Ø [±0,1 mm]
29 mm
Height [±0,1 mm]
10 mm
Weight
49.54 g
Magnetization Direction
↑ axial
Load capacity
16.04 kg / 157.3 N
Magnetic Induction
351.88 mT
Coating
[NiCuNi] nickel
17.34 ZŁ with VAT / pcs + price for transport
14.10 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need help making a decision?
Give us a call
+48 888 99 98 98
or contact us through
request form
the contact section.
Force and structure of magnetic components can be calculated with our
modular calculator.
Orders submitted before 14:00 will be dispatched today!
MW 29x10 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from their consistent magnetism, neodymium magnets have these key benefits:
- They retain their attractive force for almost 10 years – the loss is just ~1% (based on simulations),
- They remain magnetized despite exposure to magnetic noise,
- Thanks to the polished finish and gold coating, they have an visually attractive appearance,
- The outer field strength of the magnet shows advanced magnetic properties,
- These magnets tolerate high temperatures, often exceeding 230°C, when properly designed (in relation to build),
- With the option for fine forming and targeted design, these magnets can be produced in multiple shapes and sizes, greatly improving application potential,
- Wide application in advanced technical fields – they serve a purpose in computer drives, electromechanical systems, medical equipment along with high-tech tools,
- Thanks to their power density, small magnets offer high magnetic performance, with minimal size,
Disadvantages of NdFeB magnets:
- They can break when subjected to a heavy impact. If the magnets are exposed to external force, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from cracks and enhances its overall strength,
- High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a wet environment – during outdoor use, we recommend using waterproof magnets, such as those made of polymer,
- Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing complex structures directly in the magnet,
- Potential hazard linked to microscopic shards may arise, in case of ingestion, which is notable in the context of child safety. Furthermore, miniature parts from these magnets have the potential to hinder health screening once in the system,
- In cases of large-volume purchasing, neodymium magnet cost may not be economically viable,
Magnetic strength at its maximum – what affects it?
The given pulling force of the magnet corresponds to the maximum force, calculated in ideal conditions, that is:
- with the use of low-carbon steel plate serving as a magnetic yoke
- of a thickness of at least 10 mm
- with a refined outer layer
- in conditions of no clearance
- with vertical force applied
- in normal thermal conditions
Determinants of lifting force in real conditions
Practical lifting force is determined by elements, listed from the most critical to the less significant:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was performed on a smooth plate of suitable thickness, under a perpendicular pulling force, however under attempts to slide the magnet the lifting capacity is smaller. Moreover, even a small distance {between} the magnet and the plate decreases the load capacity.
Safety Precautions
Keep neodymium magnets away from TV, wallet, and computer HDD.
Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Neodymium magnets can become demagnetized at high temperatures.
Whilst Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Never bring neodymium magnets close to a phone and GPS.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Magnets made of neodymium are fragile as well as can easily crack and get damaged.
Neodymium magnetic are extremely fragile, and by joining them in an uncontrolled manner, they will break. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.
If you have a finger between or on the path of attracting magnets, there may be a large cut or even a fracture.
The magnet is coated with nickel - be careful if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.
Remember that neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.
Neodymium magnets are the strongest magnets ever created, and their power can shock you.
To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Exercise caution!
So you are aware of why neodymium magnets are so dangerous, see the article titled How very dangerous are strong neodymium magnets?.
