tel: +48 22 499 98 98

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our proposal. Practically all magnesy neodymowe on our website are in stock for immediate delivery (see the list). Check out the magnet price list for more details see the magnet price list

Magnets for treasure hunters F200 GOLD

Where to purchase powerful magnet? Magnet holders in solid and airtight enclosure are perfect for use in difficult, demanding weather, including during rain and snow more information...

magnets with holders

Magnetic holders can be applied to improve production processes, underwater discoveries, or finding meteors made of metal check...

Enjoy delivery of your order if the order is placed by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 29x10 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010053

GTIN: 5906301810520

5

Diameter Ø [±0,1 mm]

29 mm

Height [±0,1 mm]

10 mm

Weight

49.54 g

Magnetization Direction

↑ axial

Load capacity

16.04 kg / 157.3 N

Magnetic Induction

351.88 mT

Coating

[NiCuNi] nickel

17.34 with VAT / pcs + price for transport

14.10 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
14.10 ZŁ
17.34 ZŁ
price from 50 pcs
13.25 ZŁ
16.30 ZŁ
price from 180 pcs
12.41 ZŁ
15.26 ZŁ

Not sure about your choice?

Pick up the phone and ask +48 888 99 98 98 if you prefer contact us using request form the contact page.
Parameters as well as form of magnets can be analyzed on our online calculation tool.

Same-day processing for orders placed before 14:00.

MW 29x10 / N38 - cylindrical magnet

Specification/characteristics MW 29x10 / N38 - cylindrical magnet
properties
values
Cat. no.
010053
GTIN
5906301810520
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
29 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
49.54 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
16.04 kg / 157.3 N
Magnetic Induction ~ ?
351.88 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical magnets from this series are made of sintered Neodymium-Iron-Boron (NdFeB). This ensures huge pull force while maintaining a small size. Model MW 29x10 / N38 has a pull force of approx. 16.04 kg. Their symmetrical shape makes them excellent for installing in sockets, electric motors and magnetic separators. The surface is protected by a Ni-Cu-Ni (Nickel-Copper-Nickel) coating.
The best and safest method is gluing into a hole with a slightly larger diameter (e.g. +0.1 mm clearance). We recommend two-component (epoxy) glues, which are safe for the anti-corrosion layer. Never hammer the magnets, as neodymium is a brittle material and is prone to chipping upon impact.
The 'N' number indicates the maximum strength of the material. A higher value means more power for the same size. The universal option is N38, which provides good performance at a reasonable price. For demanding applications, we recommend grade N52, which is the strongest commercially available sinter.
We use a protective plating of Ni-Cu-Ni (Nickel-Copper-Nickel), which protects in indoor conditions. This is not a hermetic barrier. During underwater use, the coating may be damaged, leading to rusting of the magnet. For such tasks, we suggest enclosing them in a sealed housing or ordering a special version.
These products are the heart of many industrial devices. They are used in generators and wind turbines and in magnetic separators for cleaning bulk products. Additionally, due to their precise dimensions, they are ideal for measuring systems and sensors.
Standard neodymium magnets (grade N) work safely up to 80°C. Above this value, the magnet loses its strength. For work in hot environments (e.g. 120°C, 150°C, 200°C), ask about high-temperature versions (H, SH, UH). Please note that magnets are sensitive to rapid temperature changes.

Advantages and disadvantages of neodymium magnets NdFeB.

Besides their stability, neodymium magnets are valued for these benefits:

  • They retain their full power for nearly ten years – the loss is just ~1% (based on simulations),
  • Their ability to resist magnetic interference from external fields is among the best,
  • Because of the reflective layer of silver, the component looks high-end,
  • Magnetic induction on the surface of these magnets is notably high,
  • Thanks to their exceptional temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
  • The ability for custom shaping as well as customization to specific needs – neodymium magnets can be manufactured in multiple variants of geometries, which extends the scope of their use cases,
  • Important function in cutting-edge sectors – they serve a purpose in data storage devices, electric motors, medical equipment along with technologically developed systems,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in compact dimensions, which makes them ideal in small systems

Disadvantages of neodymium magnets:

  • They may fracture when subjected to a heavy impact. If the magnets are exposed to shocks, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time increases its overall strength,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a humid environment, especially when used outside, we recommend using moisture-resistant magnets, such as those made of non-metallic materials,
  • The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is difficult,
  • Safety concern linked to microscopic shards may arise, especially if swallowed, which is crucial in the family environments. Moreover, miniature parts from these products may complicate medical imaging when ingested,
  • Due to expensive raw materials, their cost is considerably higher,

Maximum holding power of the magnet – what affects it?

The given strength of the magnet means the optimal strength, measured in the best circumstances, that is:

  • with mild steel, serving as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a smooth surface
  • with zero air gap
  • with vertical force applied
  • in normal thermal conditions

Lifting capacity in real conditions – factors

Practical lifting force is determined by factors, by priority:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on a smooth plate of suitable thickness, under a perpendicular pulling force, however under shearing force the lifting capacity is smaller. Moreover, even a minimal clearance {between} the magnet’s surface and the plate decreases the lifting capacity.

Be Cautious with Neodymium Magnets

 Maintain neodymium magnets far from youngest children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Neodymium magnets can demagnetize at high temperatures.

While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are the most powerful magnets ever created, and their strength can surprise you.

To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.

If have a finger between or alternatively on the path of attracting magnets, there may be a severe cut or even a fracture.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Neodymium magnets generate strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnets are especially fragile, which leads to damage.

Neodymium magnets are delicate and will crack if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Exercise caution!

To show why neodymium magnets are so dangerous, read the article - How dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98