Strong neodymium magnets: discs and cylinders

Looking for huge power in small size? We have in stock wide selection of various shapes and sizes. Best choice for home use, garage and industrial tasks. Browse assortment available immediately.

see full offer

Magnet fishing: solid F200/F400 sets

Begin your hobby involving underwater treasure hunting! Our double-handle grips (F200, F400) provide grip certainty and immense power. Stainless steel construction and strong lines will perform in challenging water conditions.

choose your water magnet

Reliable threaded grips

Proven solutions for fixing without drilling. Threaded mounts (external or internal) provide instant organization of work on production halls. Perfect for mounting lamps, detectors and banners.

check available threads

🚚 Order by 14:00 – we'll ship today!

Dhit sp. z o.o.
Product available Ships today (order by 14:00)

MW 29x10 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010053

GTIN/EAN: 5906301810520

5.00

Diameter Ø

29 mm [±0,1 mm]

Height

10 mm [±0,1 mm]

Weight

49.54 g

Magnetization Direction

↑ axial

Load capacity

20.82 kg / 204.22 N

Magnetic Induction

351.88 mT / 3519 Gs

Coating

[NiCuNi] Nickel

17.34 with VAT / pcs + price for transport

14.10 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
14.10 ZŁ
17.34 ZŁ
price from 50 pcs
13.25 ZŁ
16.30 ZŁ
price from 180 pcs
12.41 ZŁ
15.26 ZŁ
Need help making a decision?

Call us now +48 888 99 98 98 alternatively get in touch via contact form the contact form page.
Parameters and structure of magnets can be checked with our online calculation tool.

Orders placed before 14:00 will be shipped the same business day.

Technical details - MW 29x10 / N38 - cylindrical magnet

Specification / characteristics - MW 29x10 / N38 - cylindrical magnet

properties
properties values
Cat. no. 010053
GTIN/EAN 5906301810520
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
Diameter Ø 29 mm [±0,1 mm]
Height 10 mm [±0,1 mm]
Weight 49.54 g
Magnetization Direction ↑ axial
Load capacity ~ ? 20.82 kg / 204.22 N
Magnetic Induction ~ ? 351.88 mT / 3519 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MW 29x10 / N38 - cylindrical magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Technical simulation of the assembly - report

The following information are the outcome of a mathematical calculation. Results rely on algorithms for the class Nd2Fe14B. Real-world conditions might slightly differ from theoretical values. Use these calculations as a reference point when designing systems.

Table 1: Static pull force (force vs gap) - characteristics
MW 29x10 / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 3518 Gs
351.8 mT
20.82 kg / 45.90 lbs
20820.0 g / 204.2 N
dangerous!
1 mm 3321 Gs
332.1 mT
18.55 kg / 40.89 lbs
18548.8 g / 182.0 N
dangerous!
2 mm 3106 Gs
310.6 mT
16.23 kg / 35.77 lbs
16226.1 g / 159.2 N
dangerous!
3 mm 2883 Gs
288.3 mT
13.98 kg / 30.82 lbs
13978.2 g / 137.1 N
dangerous!
5 mm 2437 Gs
243.7 mT
9.99 kg / 22.02 lbs
9987.1 g / 98.0 N
medium risk
10 mm 1500 Gs
150.0 mT
3.78 kg / 8.34 lbs
3783.1 g / 37.1 N
medium risk
15 mm 905 Gs
90.5 mT
1.38 kg / 3.04 lbs
1379.2 g / 13.5 N
low risk
20 mm 563 Gs
56.3 mT
0.53 kg / 1.17 lbs
532.4 g / 5.2 N
low risk
30 mm 247 Gs
24.7 mT
0.10 kg / 0.23 lbs
102.4 g / 1.0 N
low risk
50 mm 72 Gs
7.2 mT
0.01 kg / 0.02 lbs
8.7 g / 0.1 N
low risk

Table 2: Sliding force (wall)
MW 29x10 / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 4.16 kg / 9.18 lbs
4164.0 g / 40.8 N
1 mm Stal (~0.2) 3.71 kg / 8.18 lbs
3710.0 g / 36.4 N
2 mm Stal (~0.2) 3.25 kg / 7.16 lbs
3246.0 g / 31.8 N
3 mm Stal (~0.2) 2.80 kg / 6.16 lbs
2796.0 g / 27.4 N
5 mm Stal (~0.2) 2.00 kg / 4.40 lbs
1998.0 g / 19.6 N
10 mm Stal (~0.2) 0.76 kg / 1.67 lbs
756.0 g / 7.4 N
15 mm Stal (~0.2) 0.28 kg / 0.61 lbs
276.0 g / 2.7 N
20 mm Stal (~0.2) 0.11 kg / 0.23 lbs
106.0 g / 1.0 N
30 mm Stal (~0.2) 0.02 kg / 0.04 lbs
20.0 g / 0.2 N
50 mm Stal (~0.2) 0.00 kg / 0.00 lbs
2.0 g / 0.0 N

Table 3: Vertical assembly (shearing) - vertical pull
MW 29x10 / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
6.25 kg / 13.77 lbs
6246.0 g / 61.3 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
4.16 kg / 9.18 lbs
4164.0 g / 40.8 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
2.08 kg / 4.59 lbs
2082.0 g / 20.4 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
10.41 kg / 22.95 lbs
10410.0 g / 102.1 N

Table 4: Material efficiency (substrate influence) - sheet metal selection
MW 29x10 / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
5%
1.04 kg / 2.30 lbs
1041.0 g / 10.2 N
1 mm
13%
2.60 kg / 5.74 lbs
2602.5 g / 25.5 N
2 mm
25%
5.21 kg / 11.48 lbs
5205.0 g / 51.1 N
3 mm
38%
7.81 kg / 17.21 lbs
7807.5 g / 76.6 N
5 mm
63%
13.01 kg / 28.69 lbs
13012.5 g / 127.7 N
10 mm
100%
20.82 kg / 45.90 lbs
20820.0 g / 204.2 N
11 mm
100%
20.82 kg / 45.90 lbs
20820.0 g / 204.2 N
12 mm
100%
20.82 kg / 45.90 lbs
20820.0 g / 204.2 N

Table 5: Working in heat (material behavior) - resistance threshold
MW 29x10 / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 20.82 kg / 45.90 lbs
20820.0 g / 204.2 N
OK
40 °C -2.2% 20.36 kg / 44.89 lbs
20362.0 g / 199.8 N
OK
60 °C -4.4% 19.90 kg / 43.88 lbs
19903.9 g / 195.3 N
80 °C -6.6% 19.45 kg / 42.87 lbs
19445.9 g / 190.8 N
100 °C -28.8% 14.82 kg / 32.68 lbs
14823.8 g / 145.4 N

Table 6: Two magnets (attraction) - forces in the system
MW 29x10 / N38

Gap (mm) Attraction (kg/lbs) (N-S) Sliding Force (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 50.40 kg / 111.11 lbs
5 016 Gs
7.56 kg / 16.67 lbs
7560 g / 74.2 N
N/A
1 mm 47.70 kg / 105.17 lbs
6 845 Gs
7.16 kg / 15.78 lbs
7156 g / 70.2 N
42.93 kg / 94.65 lbs
~0 Gs
2 mm 44.90 kg / 98.99 lbs
6 641 Gs
6.74 kg / 14.85 lbs
6735 g / 66.1 N
40.41 kg / 89.09 lbs
~0 Gs
3 mm 42.08 kg / 92.77 lbs
6 429 Gs
6.31 kg / 13.92 lbs
6312 g / 61.9 N
37.87 kg / 83.50 lbs
~0 Gs
5 mm 36.52 kg / 80.52 lbs
5 990 Gs
5.48 kg / 12.08 lbs
5478 g / 53.7 N
32.87 kg / 72.47 lbs
~0 Gs
10 mm 24.18 kg / 53.30 lbs
4 873 Gs
3.63 kg / 7.99 lbs
3626 g / 35.6 N
21.76 kg / 47.97 lbs
~0 Gs
20 mm 9.16 kg / 20.19 lbs
2 999 Gs
1.37 kg / 3.03 lbs
1374 g / 13.5 N
8.24 kg / 18.17 lbs
~0 Gs
50 mm 0.54 kg / 1.19 lbs
729 Gs
0.08 kg / 0.18 lbs
81 g / 0.8 N
0.49 kg / 1.07 lbs
~0 Gs
60 mm 0.25 kg / 0.55 lbs
493 Gs
0.04 kg / 0.08 lbs
37 g / 0.4 N
0.22 kg / 0.49 lbs
~0 Gs
70 mm 0.12 kg / 0.27 lbs
347 Gs
0.02 kg / 0.04 lbs
18 g / 0.2 N
0.11 kg / 0.24 lbs
~0 Gs
80 mm 0.06 kg / 0.14 lbs
252 Gs
0.01 kg / 0.02 lbs
10 g / 0.1 N
0.06 kg / 0.13 lbs
~0 Gs
90 mm 0.04 kg / 0.08 lbs
188 Gs
0.01 kg / 0.01 lbs
5 g / 0.1 N
0.03 kg / 0.07 lbs
~0 Gs
100 mm 0.02 kg / 0.05 lbs
144 Gs
0.00 kg / 0.01 lbs
3 g / 0.0 N
0.02 kg / 0.04 lbs
~0 Gs

Table 7: Safety (HSE) (electronics) - precautionary measures
MW 29x10 / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 13.5 cm
Hearing aid 10 Gs (1.0 mT) 10.5 cm
Mechanical watch 20 Gs (2.0 mT) 8.5 cm
Phone / Smartphone 40 Gs (4.0 mT) 6.5 cm
Car key 50 Gs (5.0 mT) 6.0 cm
Payment card 400 Gs (40.0 mT) 2.5 cm
HDD hard drive 600 Gs (60.0 mT) 2.0 cm

Table 8: Collisions (cracking risk) - collision effects
MW 29x10 / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 22.90 km/h
(6.36 m/s)
1.00 J
30 mm 35.92 km/h
(9.98 m/s)
2.47 J
50 mm 46.24 km/h
(12.85 m/s)
4.09 J
100 mm 65.38 km/h
(18.16 m/s)
8.17 J

Table 9: Anti-corrosion coating durability
MW 29x10 / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Construction data (Pc)
MW 29x10 / N38

Parameter Value SI Unit / Description
Magnetic Flux 24 471 Mx 244.7 µWb
Pc Coefficient 0.45 Low (Flat)

Table 11: Hydrostatics and buoyancy
MW 29x10 / N38

Environment Effective steel pull Effect
Air (land) 20.82 kg Standard
Water (riverbed) 23.84 kg
(+3.02 kg buoyancy gain)
+14.5%
Corrosion warning: Standard nickel requires drying after every contact with moisture; lack of maintenance will lead to rust spots.
1. Wall mount (shear)

*Warning: On a vertical surface, the magnet holds just approx. 20-30% of its max power.

2. Efficiency vs thickness

*Thin metal sheet (e.g. computer case) drastically reduces the holding force.

3. Power loss vs temp

*For standard magnets, the max working temp is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.45

This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Technical and environmental data
Elemental analysis
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Ecology and recycling (GPSR)
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 010053-2026
Magnet Unit Converter
Force (pull)

Field Strength

Other offers

The presented product is an extremely powerful cylinder magnet, produced from modern NdFeB material, which, at dimensions of Ø29x10 mm, guarantees the highest energy density. This specific item boasts high dimensional repeatability and industrial build quality, making it an ideal solution for professional engineers and designers. As a cylindrical magnet with significant force (approx. 20.82 kg), this product is in stock from our warehouse in Poland, ensuring lightning-fast order fulfillment. Furthermore, its Ni-Cu-Ni coating effectively protects it against corrosion in typical operating conditions, ensuring an aesthetic appearance and durability for years.
It successfully proves itself in DIY projects, advanced robotics, and broadly understood industry, serving as a fastening or actuating element. Thanks to the high power of 204.22 N with a weight of only 49.54 g, this cylindrical magnet is indispensable in electronics and wherever low weight is crucial.
Since our magnets have a very precise dimensions, the recommended way is to glue them into holes with a slightly larger diameter (e.g., 29.1 mm) using epoxy glues. To ensure stability in industry, anaerobic resins are used, which are safe for nickel and fill the gap, guaranteeing high repeatability of the connection.
Grade N38 is the most popular standard for professional neodymium magnets, offering an optimal price-to-power ratio and high resistance to demagnetization. If you need even stronger magnets in the same volume (Ø29x10), contact us regarding higher grades (e.g., N50, N52), however, N38 is the standard available off-the-shelf in our warehouse.
This model is characterized by dimensions Ø29x10 mm, which, at a weight of 49.54 g, makes it an element with impressive magnetic energy density. The key parameter here is the lifting capacity amounting to approximately 20.82 kg (force ~204.22 N), which, with such compact dimensions, proves the high grade of the NdFeB material. The product has a [NiCuNi] coating, which protects the surface against external factors, giving it an aesthetic, silvery shine.
Standardly, the magnetic axis runs through the center of the cylinder, causing the greatest attraction force to occur on the bases with a diameter of 29 mm. Such an arrangement is most desirable when connecting magnets in stacks (e.g., in filters) or when mounting in sockets at the bottom of a hole. On request, we can also produce versions magnetized diametrically if your project requires it.

Strengths and weaknesses of neodymium magnets.

Advantages

Apart from their superior magnetism, neodymium magnets have these key benefits:
  • They virtually do not lose power, because even after ten years the decline in efficiency is only ~1% (in laboratory conditions),
  • They have excellent resistance to magnetic field loss when exposed to opposing magnetic fields,
  • The use of an metallic layer of noble metals (nickel, gold, silver) causes the element to look better,
  • Neodymium magnets generate maximum magnetic induction on a small surface, which increases force concentration,
  • Neodymium magnets are characterized by very high magnetic induction on the magnet surface and are able to act (depending on the shape) even at a temperature of 230°C or more...
  • Possibility of precise shaping and adapting to precise requirements,
  • Universal use in high-tech industry – they are used in magnetic memories, motor assemblies, precision medical tools, as well as multitasking production systems.
  • Compactness – despite small sizes they generate large force, making them ideal for precision applications

Disadvantages

What to avoid - cons of neodymium magnets: tips and applications.
  • To avoid cracks upon strong impacts, we suggest using special steel holders. Such a solution protects the magnet and simultaneously increases its durability.
  • We warn that neodymium magnets can lose their strength at high temperatures. To prevent this, we suggest our specialized [AH] magnets, which work effectively even at 230°C.
  • Due to the susceptibility of magnets to corrosion in a humid environment, we recommend using waterproof magnets made of rubber, plastic or other material immune to moisture, in case of application outdoors
  • Due to limitations in creating threads and complex forms in magnets, we propose using casing - magnetic mount.
  • Health risk related to microscopic parts of magnets are risky, in case of ingestion, which is particularly important in the context of child safety. Additionally, tiny parts of these magnets are able to be problematic in diagnostics medical after entering the body.
  • Higher cost of purchase is a significant factor to consider compared to ceramic magnets, especially in budget applications

Holding force characteristics

Highest magnetic holding forcewhat affects it?

The force parameter is a result of laboratory testing performed under the following configuration:
  • on a plate made of structural steel, optimally conducting the magnetic flux
  • possessing a massiveness of at least 10 mm to ensure full flux closure
  • characterized by lack of roughness
  • with total lack of distance (without coatings)
  • for force applied at a right angle (pull-off, not shear)
  • in neutral thermal conditions

Practical lifting capacity: influencing factors

Effective lifting capacity is affected by specific conditions, including (from priority):
  • Distance (between the magnet and the plate), since even a very small distance (e.g. 0.5 mm) can cause a decrease in lifting capacity by up to 50% (this also applies to paint, corrosion or debris).
  • Force direction – declared lifting capacity refers to detachment vertically. When applying parallel force, the magnet holds significantly lower power (often approx. 20-30% of nominal force).
  • Substrate thickness – for full efficiency, the steel must be sufficiently thick. Thin sheet restricts the attraction force (the magnet "punches through" it).
  • Material composition – not every steel attracts identically. High carbon content weaken the interaction with the magnet.
  • Surface finish – full contact is obtained only on polished steel. Any scratches and bumps create air cushions, reducing force.
  • Thermal factor – high temperature reduces magnetic field. Too high temperature can permanently damage the magnet.

Holding force was checked on the plate surface of 20 mm thickness, when the force acted perpendicularly, however under parallel forces the holding force is lower. Additionally, even a minimal clearance between the magnet’s surface and the plate lowers the lifting capacity.

Warnings
Magnetic media

Data protection: Neodymium magnets can damage data carriers and delicate electronics (pacemakers, medical aids, timepieces).

Warning for heart patients

Medical warning: Neodymium magnets can deactivate heart devices and defibrillators. Do not approach if you have electronic implants.

Crushing risk

Big blocks can smash fingers in a fraction of a second. Do not put your hand between two attracting surfaces.

Danger to the youngest

Neodymium magnets are not suitable for play. Swallowing a few magnets can lead to them connecting inside the digestive tract, which poses a severe health hazard and requires urgent medical intervention.

Skin irritation risks

It is widely known that nickel (the usual finish) is a strong allergen. If you have an allergy, prevent direct skin contact and select encased magnets.

Magnet fragility

Despite metallic appearance, the material is delicate and cannot withstand shocks. Avoid impacts, as the magnet may shatter into hazardous fragments.

GPS Danger

A powerful magnetic field interferes with the functioning of compasses in smartphones and navigation systems. Maintain magnets near a device to avoid damaging the sensors.

Permanent damage

Standard neodymium magnets (N-type) undergo demagnetization when the temperature exceeds 80°C. The loss of strength is permanent.

Dust explosion hazard

Combustion risk: Rare earth powder is explosive. Avoid machining magnets without safety gear as this may cause fire.

Handling rules

Before starting, read the rules. Sudden snapping can destroy the magnet or hurt your hand. Think ahead.

Security! Details about risks in the article: Magnet Safety Guide.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98