MP 30x6x10 / N38 - ring magnet
ring magnet
Catalog no 030197
GTIN/EAN: 5906301812142
Diameter
30 mm [±0,1 mm]
internal diameter Ø
6 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
50.89 g
Magnetization Direction
↑ axial
Load capacity
20.71 kg / 203.16 N
Magnetic Induction
343.81 mT / 3438 Gs
Coating
[NiCuNi] Nickel
16.00 ZŁ with VAT / pcs + price for transport
13.01 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Pick up the phone and ask
+48 22 499 98 98
otherwise drop us a message by means of
form
our website.
Strength along with structure of magnets can be tested with our
our magnetic calculator.
Same-day shipping for orders placed before 14:00.
Physical properties - MP 30x6x10 / N38 - ring magnet
Specification / characteristics - MP 30x6x10 / N38 - ring magnet
| properties | values |
|---|---|
| Cat. no. | 030197 |
| GTIN/EAN | 5906301812142 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter | 30 mm [±0,1 mm] |
| internal diameter Ø | 6 mm [±0,1 mm] |
| Height | 10 mm [±0,1 mm] |
| Weight | 50.89 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 20.71 kg / 203.16 N |
| Magnetic Induction ~ ? | 343.81 mT / 3438 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering analysis of the assembly - technical parameters
Presented information represent the result of a mathematical analysis. Results rely on algorithms for the material Nd2Fe14B. Real-world parameters might slightly deviate from the simulation results. Treat these data as a reference point when designing systems.
Table 1: Static pull force (force vs gap) - interaction chart
MP 30x6x10 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
5619 Gs
561.9 mT
|
20.71 kg / 45.66 LBS
20710.0 g / 203.2 N
|
crushing |
| 1 mm |
5241 Gs
524.1 mT
|
18.01 kg / 39.71 LBS
18011.7 g / 176.7 N
|
crushing |
| 2 mm |
4861 Gs
486.1 mT
|
15.50 kg / 34.17 LBS
15498.1 g / 152.0 N
|
crushing |
| 3 mm |
4490 Gs
449.0 mT
|
13.22 kg / 29.15 LBS
13223.5 g / 129.7 N
|
crushing |
| 5 mm |
3792 Gs
379.2 mT
|
9.43 kg / 20.79 LBS
9429.0 g / 92.5 N
|
warning |
| 10 mm |
2404 Gs
240.4 mT
|
3.79 kg / 8.36 LBS
3791.3 g / 37.2 N
|
warning |
| 15 mm |
1526 Gs
152.6 mT
|
1.53 kg / 3.37 LBS
1527.0 g / 15.0 N
|
safe |
| 20 mm |
1000 Gs
100.0 mT
|
0.66 kg / 1.45 LBS
655.5 g / 6.4 N
|
safe |
| 30 mm |
482 Gs
48.2 mT
|
0.15 kg / 0.34 LBS
152.6 g / 1.5 N
|
safe |
| 50 mm |
161 Gs
16.1 mT
|
0.02 kg / 0.04 LBS
17.0 g / 0.2 N
|
safe |
Table 2: Vertical hold (vertical surface)
MP 30x6x10 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.14 kg / 9.13 LBS
4142.0 g / 40.6 N
|
| 1 mm | Stal (~0.2) |
3.60 kg / 7.94 LBS
3602.0 g / 35.3 N
|
| 2 mm | Stal (~0.2) |
3.10 kg / 6.83 LBS
3100.0 g / 30.4 N
|
| 3 mm | Stal (~0.2) |
2.64 kg / 5.83 LBS
2644.0 g / 25.9 N
|
| 5 mm | Stal (~0.2) |
1.89 kg / 4.16 LBS
1886.0 g / 18.5 N
|
| 10 mm | Stal (~0.2) |
0.76 kg / 1.67 LBS
758.0 g / 7.4 N
|
| 15 mm | Stal (~0.2) |
0.31 kg / 0.67 LBS
306.0 g / 3.0 N
|
| 20 mm | Stal (~0.2) |
0.13 kg / 0.29 LBS
132.0 g / 1.3 N
|
| 30 mm | Stal (~0.2) |
0.03 kg / 0.07 LBS
30.0 g / 0.3 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.01 LBS
4.0 g / 0.0 N
|
Table 3: Vertical assembly (shearing) - behavior on slippery surfaces
MP 30x6x10 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
6.21 kg / 13.70 LBS
6213.0 g / 60.9 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.14 kg / 9.13 LBS
4142.0 g / 40.6 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
2.07 kg / 4.57 LBS
2071.0 g / 20.3 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
10.36 kg / 22.83 LBS
10355.0 g / 101.6 N
|
Table 4: Steel thickness (saturation) - power losses
MP 30x6x10 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.04 kg / 2.28 LBS
1035.5 g / 10.2 N
|
| 1 mm |
|
2.59 kg / 5.71 LBS
2588.8 g / 25.4 N
|
| 2 mm |
|
5.18 kg / 11.41 LBS
5177.5 g / 50.8 N
|
| 3 mm |
|
7.77 kg / 17.12 LBS
7766.3 g / 76.2 N
|
| 5 mm |
|
12.94 kg / 28.54 LBS
12943.8 g / 127.0 N
|
| 10 mm |
|
20.71 kg / 45.66 LBS
20710.0 g / 203.2 N
|
| 11 mm |
|
20.71 kg / 45.66 LBS
20710.0 g / 203.2 N
|
| 12 mm |
|
20.71 kg / 45.66 LBS
20710.0 g / 203.2 N
|
Table 5: Thermal stability (stability) - thermal limit
MP 30x6x10 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
20.71 kg / 45.66 LBS
20710.0 g / 203.2 N
|
OK |
| 40 °C | -2.2% |
20.25 kg / 44.65 LBS
20254.4 g / 198.7 N
|
OK |
| 60 °C | -4.4% |
19.80 kg / 43.65 LBS
19798.8 g / 194.2 N
|
OK |
| 80 °C | -6.6% |
19.34 kg / 42.64 LBS
19343.1 g / 189.8 N
|
|
| 100 °C | -28.8% |
14.75 kg / 32.51 LBS
14745.5 g / 144.7 N
|
Table 6: Two magnets (attraction) - forces in the system
MP 30x6x10 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Sliding Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
103.97 kg / 229.22 LBS
6 035 Gs
|
15.60 kg / 34.38 LBS
15596 g / 153.0 N
|
N/A |
| 1 mm |
97.15 kg / 214.17 LBS
10 864 Gs
|
14.57 kg / 32.13 LBS
14572 g / 143.0 N
|
87.43 kg / 192.75 LBS
~0 Gs
|
| 2 mm |
90.42 kg / 199.35 LBS
10 481 Gs
|
13.56 kg / 29.90 LBS
13564 g / 133.1 N
|
81.38 kg / 179.42 LBS
~0 Gs
|
| 3 mm |
83.97 kg / 185.13 LBS
10 100 Gs
|
12.60 kg / 27.77 LBS
12596 g / 123.6 N
|
75.57 kg / 166.61 LBS
~0 Gs
|
| 5 mm |
71.94 kg / 158.60 LBS
9 349 Gs
|
10.79 kg / 23.79 LBS
10791 g / 105.9 N
|
64.75 kg / 142.74 LBS
~0 Gs
|
| 10 mm |
47.34 kg / 104.36 LBS
7 583 Gs
|
7.10 kg / 15.65 LBS
7100 g / 69.7 N
|
42.60 kg / 93.92 LBS
~0 Gs
|
| 20 mm |
19.03 kg / 41.96 LBS
4 809 Gs
|
2.86 kg / 6.29 LBS
2855 g / 28.0 N
|
17.13 kg / 37.77 LBS
~0 Gs
|
| 50 mm |
1.53 kg / 3.37 LBS
1 363 Gs
|
0.23 kg / 0.51 LBS
229 g / 2.2 N
|
1.38 kg / 3.03 LBS
~0 Gs
|
| 60 mm |
0.77 kg / 1.69 LBS
965 Gs
|
0.11 kg / 0.25 LBS
115 g / 1.1 N
|
0.69 kg / 1.52 LBS
~0 Gs
|
| 70 mm |
0.41 kg / 0.90 LBS
706 Gs
|
0.06 kg / 0.14 LBS
61 g / 0.6 N
|
0.37 kg / 0.81 LBS
~0 Gs
|
| 80 mm |
0.23 kg / 0.51 LBS
531 Gs
|
0.03 kg / 0.08 LBS
35 g / 0.3 N
|
0.21 kg / 0.46 LBS
~0 Gs
|
| 90 mm |
0.14 kg / 0.30 LBS
409 Gs
|
0.02 kg / 0.05 LBS
21 g / 0.2 N
|
0.12 kg / 0.27 LBS
~0 Gs
|
| 100 mm |
0.09 kg / 0.19 LBS
322 Gs
|
0.01 kg / 0.03 LBS
13 g / 0.1 N
|
0.08 kg / 0.17 LBS
~0 Gs
|
Table 7: Safety (HSE) (implants) - precautionary measures
MP 30x6x10 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 19.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 15.0 cm |
| Timepiece | 20 Gs (2.0 mT) | 12.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 9.0 cm |
| Remote | 50 Gs (5.0 mT) | 8.5 cm |
| Payment card | 400 Gs (40.0 mT) | 3.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 3.0 cm |
Table 8: Impact energy (kinetic energy) - warning
MP 30x6x10 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
22.55 km/h
(6.26 m/s)
|
1.00 J | |
| 30 mm |
35.40 km/h
(9.83 m/s)
|
2.46 J | |
| 50 mm |
45.52 km/h
(12.64 m/s)
|
4.07 J | |
| 100 mm |
64.34 km/h
(17.87 m/s)
|
8.13 J |
Table 9: Corrosion resistance
MP 30x6x10 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Flux)
MP 30x6x10 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 31 585 Mx | 315.8 µWb |
| Pc Coefficient | 0.96 | High (Stable) |
Table 11: Underwater work (magnet fishing)
MP 30x6x10 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 20.71 kg | Standard |
| Water (riverbed) |
23.71 kg
(+3.00 kg buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Note: On a vertical surface, the magnet holds only a fraction of its nominal pull.
2. Efficiency vs thickness
*Thin steel (e.g. 0.5mm PC case) significantly limits the holding force.
3. Temperature resistance
*For standard magnets, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.96
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other offers
Strengths and weaknesses of rare earth magnets.
Pros
- They have unchanged lifting capacity, and over nearly ten years their performance decreases symbolically – ~1% (in testing),
- Neodymium magnets remain exceptionally resistant to demagnetization caused by external magnetic fields,
- In other words, due to the smooth surface of gold, the element becomes visually attractive,
- They show high magnetic induction at the operating surface, making them more effective,
- Due to their durability and thermal resistance, neodymium magnets are capable of operate (depending on the form) even at high temperatures reaching 230°C or more...
- Considering the potential of accurate shaping and adaptation to custom projects, NdFeB magnets can be manufactured in a variety of geometric configurations, which makes them more universal,
- Versatile presence in future technologies – they find application in HDD drives, drive modules, medical equipment, and multitasking production systems.
- Thanks to efficiency per cm³, small magnets offer high operating force, in miniature format,
Limitations
- At strong impacts they can break, therefore we advise placing them in special holders. A metal housing provides additional protection against damage, as well as increases the magnet's durability.
- NdFeB magnets lose strength when exposed to high temperatures. After reaching 80°C, many of them experience permanent drop of power (a factor is the shape and dimensions of the magnet). We offer magnets specially adapted to work at temperatures up to 230°C marked [AH], which are very resistant to heat
- When exposed to humidity, magnets usually rust. For applications outside, it is recommended to use protective magnets, such as those in rubber or plastics, which prevent oxidation and corrosion.
- Due to limitations in realizing threads and complex shapes in magnets, we recommend using cover - magnetic holder.
- Possible danger to health – tiny shards of magnets can be dangerous, when accidentally swallowed, which becomes key in the context of child health protection. It is also worth noting that small components of these magnets can complicate diagnosis medical after entering the body.
- High unit price – neodymium magnets cost more than other types of magnets (e.g. ferrite), which can limit application in large quantities
Pull force analysis
Maximum lifting capacity of the magnet – what affects it?
- using a plate made of low-carbon steel, serving as a ideal flux conductor
- whose thickness is min. 10 mm
- with an ideally smooth touching surface
- under conditions of ideal adhesion (surface-to-surface)
- during pulling in a direction perpendicular to the mounting surface
- at temperature room level
Practical lifting capacity: influencing factors
- Gap (betwixt the magnet and the plate), because even a very small distance (e.g. 0.5 mm) results in a decrease in lifting capacity by up to 50% (this also applies to paint, corrosion or dirt).
- Load vector – highest force is reached only during perpendicular pulling. The resistance to sliding of the magnet along the plate is standardly several times lower (approx. 1/5 of the lifting capacity).
- Metal thickness – thin material does not allow full use of the magnet. Part of the magnetic field passes through the material instead of generating force.
- Steel grade – ideal substrate is high-permeability steel. Stainless steels may attract less.
- Surface condition – smooth surfaces guarantee perfect abutment, which increases field saturation. Rough surfaces weaken the grip.
- Thermal factor – high temperature reduces magnetic field. Too high temperature can permanently demagnetize the magnet.
Lifting capacity testing was conducted on a smooth plate of optimal thickness, under a perpendicular pulling force, in contrast under shearing force the lifting capacity is smaller. Additionally, even a minimal clearance between the magnet’s surface and the plate lowers the lifting capacity.
Warnings
Do not give to children
Adult use only. Small elements pose a choking risk, causing severe trauma. Keep out of reach of kids and pets.
Electronic devices
Do not bring magnets near a purse, laptop, or TV. The magnetism can irreversibly ruin these devices and erase data from cards.
Fragile material
Watch out for shards. Magnets can explode upon violent connection, ejecting sharp fragments into the air. Wear goggles.
Do not drill into magnets
Powder produced during cutting of magnets is self-igniting. Do not drill into magnets unless you are an expert.
Bone fractures
Pinching hazard: The attraction force is so immense that it can result in hematomas, pinching, and broken bones. Use thick gloves.
Medical interference
For implant holders: Strong magnetic fields disrupt medical devices. Keep minimum 30 cm distance or request help to handle the magnets.
Sensitization to coating
Certain individuals experience a sensitization to Ni, which is the standard coating for NdFeB magnets. Prolonged contact may cause an allergic reaction. We suggest use safety gloves.
Immense force
Exercise caution. Neodymium magnets act from a distance and snap with huge force, often faster than you can move away.
GPS and phone interference
Be aware: rare earth magnets generate a field that disrupts sensitive sensors. Keep a separation from your phone, device, and GPS.
Power loss in heat
Control the heat. Exposing the magnet to high heat will permanently weaken its magnetic structure and pulling force.
