e-mail: bok@dhit.pl

neodymium magnets

We offer red color magnets Nd2Fe14B - our offer. Practically all magnesy neodymowe in our store are in stock for immediate purchase (see the list). See the magnet price list for more details see the magnet price list

Magnets for water searching F400 GOLD

Where to purchase strong magnet? Magnet holders in solid and airtight steel enclosure are excellent for use in challenging climate conditions, including during snow and rain see...

magnetic holders

Holders with magnets can be applied to enhance production processes, exploring underwater areas, or locating meteorites from gold check...

Enjoy shipping of your order if the order is placed by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available Ships tomorrow

MP 30x6x10 / N38 - ring magnet

ring magnet

Catalog no 030197

GTIN: 5906301812142

5

Diameter [±0,1 mm]

30 mm

internal diameter Ø [±0,1 mm]

6 mm

Height [±0,1 mm]

10 mm

Weight

56.55 g

Magnetization Direction

↑ axial

Load capacity

3.42 kg / 33.54 N

Magnetic Induction

248.80 mT

Coating

[NiCuNi] nickel

16.00 with VAT / pcs + price for transport

13.01 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
13.01 ZŁ
16.00 ZŁ
price from 50 pcs
12.23 ZŁ
15.04 ZŁ
price from 200 pcs
11.45 ZŁ
14.08 ZŁ

Want to negotiate?

Give us a call +48 888 99 98 98 otherwise drop us a message by means of inquiry form our website.
Force and appearance of magnetic components can be estimated with our power calculator.

Orders submitted before 14:00 will be dispatched today!

MP 30x6x10 / N38 - ring magnet

Specification/characteristics MP 30x6x10 / N38 - ring magnet
properties
values
Cat. no.
030197
GTIN
5906301812142
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter
30 mm [±0,1 mm]
internal diameter Ø
6 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
56.55 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
3.42 kg / 33.54 N
Magnetic Induction ~ ?
248.80 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

A neodymium ring magnet is designed for screwing in. The presence of a hole (often for a countersunk screw) enables easy screwing of the magnet to non-magnetic surfaces. Product MP 30x6x10 / N38 with a force of 3.42 kg is ideal as a cabinet latch, hanger, or box closure. Its shape permits sliding it onto round elements.
This is a crucial issue. NdFeB sinters are hard but fragile like ceramic. During installation, tighten with moderation. We recommend manual tightening, not impact drivers, because excessive pressure can shatter the ring. We suggest to use a rubber washer to absorb stress. Note: cracking during installation results from the material properties, but an installation error.
Standard ring magnets have poles on flat faces. To make two magnets attract, you need a set where one magnet has the **N** pole on the countersunk side and the other has the **S** pole. With identical magnets, they might not fit on the mounting sides. In the store, we try to mark complementary sets, or you can use one magnet and a steel washer as the second element.
We distinguish rings in two versions: with a straight hole and with a countersunk hole (chamfered). The screw version lets the screw sit flush with the surface, which is key in carpentry. The straight hole is better for sliding onto rods or separators. The model you are viewing is the version MP 30x6x10 / N38 - check the hole type in the title or photo.
The layer used is a standard anti-corrosion Ni-Cu-Ni coating. It secures the neodymium in dry rooms, but does not ensure full waterproofing. Around the hole, the coating is thinner and is easily scratched by the screw, becoming a focal point for corrosion. We recommend use for inside buildings.
The strength listed (3.42 kg) refers to ideal contact with a thick steel plate. In practice depends on contact area and distance (e.g. paint layer). The magnet with a hole has slightly less active surface than a solid cylinder, but still offers powerful force. When mounted on a wall (shear force), the magnet will hold approx. 20-30% of its nominal pull force.

Advantages and disadvantages of neodymium magnets NdFeB.

Besides their high retention, neodymium magnets are valued for these benefits:

  • They virtually do not lose strength, because even after ten years, the performance loss is only ~1% (based on calculations),
  • They show superior resistance to demagnetization from outside magnetic sources,
  • The use of a mirror-like gold surface provides a eye-catching finish,
  • They exhibit elevated levels of magnetic induction near the outer area of the magnet,
  • These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to form),
  • With the option for fine forming and precise design, these magnets can be produced in numerous shapes and sizes, greatly improving application potential,
  • Important function in new technology industries – they are used in data storage devices, electric motors, healthcare devices along with other advanced devices,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of NdFeB magnets:

  • They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to physical collisions, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage and reinforces its overall durability,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of protective material for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing complex structures directly in the magnet,
  • Possible threat from tiny pieces may arise, if ingested accidentally, which is notable in the family environments. Moreover, minuscule fragments from these products have the potential to interfere with diagnostics once in the system,
  • In cases of large-volume purchasing, neodymium magnet cost may not be economically viable,

Best holding force of the magnet in ideal parameterswhat it depends on?

The given lifting capacity of the magnet represents the maximum lifting force, calculated in the best circumstances, namely:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • in conditions of no clearance
  • with vertical force applied
  • at room temperature

Determinants of lifting force in real conditions

In practice, the holding capacity of a magnet is affected by these factors, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was measured on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, whereas under parallel forces the load capacity is reduced by as much as 75%. Additionally, even a slight gap {between} the magnet’s surface and the plate lowers the lifting capacity.

Safety Guidelines with Neodymium Magnets

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

  Do not give neodymium magnets to youngest children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnetic are incredibly fragile, they easily crack and can become damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

If you have a finger between or alternatively on the path of attracting magnets, there may be a serious cut or even a fracture.

Avoid bringing neodymium magnets close to a phone or GPS.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their strength can surprise you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can demagnetize at high temperatures.

While Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Caution!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98