Neodymiums – wide shape selection

Need reliable magnetic field? We have in stock rich assortment of various shapes and sizes. They are ideal for home use, garage and model making. See products available immediately.

check magnet catalog

Magnets for seabed exploration

Discover your passion involving underwater treasure hunting! Our specialized grips (F200, F400) provide grip certainty and huge lifting capacity. Stainless steel construction and reinforced ropes are reliable in rivers and lakes.

find your set

Industrial magnetic grips industrial

Proven solutions for mounting non-invasive. Threaded grips (M8, M10, M12) provide instant organization of work on production halls. They are indispensable installing lighting, detectors and banners.

check available threads

🚚 Order by 14:00 – we'll ship same day!

Dhit sp. z o.o.
Product available Ships today (order by 14:00)

MP 30x6x10 / N38 - ring magnet

ring magnet

Catalog no 030197

GTIN/EAN: 5906301812142

5.00

Diameter

30 mm [±0,1 mm]

internal diameter Ø

6 mm [±0,1 mm]

Height

10 mm [±0,1 mm]

Weight

50.89 g

Magnetization Direction

↑ axial

Load capacity

20.71 kg / 203.16 N

Magnetic Induction

343.81 mT / 3438 Gs

Coating

[NiCuNi] Nickel

16.00 with VAT / pcs + price for transport

13.01 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
13.01 ZŁ
16.00 ZŁ
price from 50 pcs
12.23 ZŁ
15.04 ZŁ
price from 200 pcs
11.45 ZŁ
14.08 ZŁ
Looking for a better price?

Call us now +48 22 499 98 98 alternatively let us know through inquiry form our website.
Force along with structure of magnets can be calculated on our force calculator.

Same-day processing for orders placed before 14:00.

Technical of the product - MP 30x6x10 / N38 - ring magnet

Specification / characteristics - MP 30x6x10 / N38 - ring magnet

properties
properties values
Cat. no. 030197
GTIN/EAN 5906301812142
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
Diameter 30 mm [±0,1 mm]
internal diameter Ø 6 mm [±0,1 mm]
Height 10 mm [±0,1 mm]
Weight 50.89 g
Magnetization Direction ↑ axial
Load capacity ~ ? 20.71 kg / 203.16 N
Magnetic Induction ~ ? 343.81 mT / 3438 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MP 30x6x10 / N38 - ring magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Physical modeling of the magnet - data

Presented data represent the outcome of a physical analysis. Values rely on models for the material Nd2Fe14B. Operational performance may differ. Use these data as a preliminary roadmap when designing systems.

Table 1: Static pull force (pull vs gap) - characteristics
MP 30x6x10 / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 5619 Gs
561.9 mT
20.71 kg / 45.66 LBS
20710.0 g / 203.2 N
dangerous!
1 mm 5241 Gs
524.1 mT
18.01 kg / 39.71 LBS
18011.7 g / 176.7 N
dangerous!
2 mm 4861 Gs
486.1 mT
15.50 kg / 34.17 LBS
15498.1 g / 152.0 N
dangerous!
3 mm 4490 Gs
449.0 mT
13.22 kg / 29.15 LBS
13223.5 g / 129.7 N
dangerous!
5 mm 3792 Gs
379.2 mT
9.43 kg / 20.79 LBS
9429.0 g / 92.5 N
strong
10 mm 2404 Gs
240.4 mT
3.79 kg / 8.36 LBS
3791.3 g / 37.2 N
strong
15 mm 1526 Gs
152.6 mT
1.53 kg / 3.37 LBS
1527.0 g / 15.0 N
weak grip
20 mm 1000 Gs
100.0 mT
0.66 kg / 1.45 LBS
655.5 g / 6.4 N
weak grip
30 mm 482 Gs
48.2 mT
0.15 kg / 0.34 LBS
152.6 g / 1.5 N
weak grip
50 mm 161 Gs
16.1 mT
0.02 kg / 0.04 LBS
17.0 g / 0.2 N
weak grip

Table 2: Vertical hold (wall)
MP 30x6x10 / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 4.14 kg / 9.13 LBS
4142.0 g / 40.6 N
1 mm Stal (~0.2) 3.60 kg / 7.94 LBS
3602.0 g / 35.3 N
2 mm Stal (~0.2) 3.10 kg / 6.83 LBS
3100.0 g / 30.4 N
3 mm Stal (~0.2) 2.64 kg / 5.83 LBS
2644.0 g / 25.9 N
5 mm Stal (~0.2) 1.89 kg / 4.16 LBS
1886.0 g / 18.5 N
10 mm Stal (~0.2) 0.76 kg / 1.67 LBS
758.0 g / 7.4 N
15 mm Stal (~0.2) 0.31 kg / 0.67 LBS
306.0 g / 3.0 N
20 mm Stal (~0.2) 0.13 kg / 0.29 LBS
132.0 g / 1.3 N
30 mm Stal (~0.2) 0.03 kg / 0.07 LBS
30.0 g / 0.3 N
50 mm Stal (~0.2) 0.00 kg / 0.01 LBS
4.0 g / 0.0 N

Table 3: Vertical assembly (shearing) - vertical pull
MP 30x6x10 / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
6.21 kg / 13.70 LBS
6213.0 g / 60.9 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
4.14 kg / 9.13 LBS
4142.0 g / 40.6 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
2.07 kg / 4.57 LBS
2071.0 g / 20.3 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
10.36 kg / 22.83 LBS
10355.0 g / 101.6 N

Table 4: Material efficiency (saturation) - power losses
MP 30x6x10 / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
5%
1.04 kg / 2.28 LBS
1035.5 g / 10.2 N
1 mm
13%
2.59 kg / 5.71 LBS
2588.8 g / 25.4 N
2 mm
25%
5.18 kg / 11.41 LBS
5177.5 g / 50.8 N
3 mm
38%
7.77 kg / 17.12 LBS
7766.3 g / 76.2 N
5 mm
63%
12.94 kg / 28.54 LBS
12943.8 g / 127.0 N
10 mm
100%
20.71 kg / 45.66 LBS
20710.0 g / 203.2 N
11 mm
100%
20.71 kg / 45.66 LBS
20710.0 g / 203.2 N
12 mm
100%
20.71 kg / 45.66 LBS
20710.0 g / 203.2 N

Table 5: Thermal resistance (material behavior) - resistance threshold
MP 30x6x10 / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 20.71 kg / 45.66 LBS
20710.0 g / 203.2 N
OK
40 °C -2.2% 20.25 kg / 44.65 LBS
20254.4 g / 198.7 N
OK
60 °C -4.4% 19.80 kg / 43.65 LBS
19798.8 g / 194.2 N
OK
80 °C -6.6% 19.34 kg / 42.64 LBS
19343.1 g / 189.8 N
100 °C -28.8% 14.75 kg / 32.51 LBS
14745.5 g / 144.7 N

Table 6: Two magnets (repulsion) - field collision
MP 30x6x10 / N38

Gap (mm) Attraction (kg/lbs) (N-S) Lateral Force (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 103.97 kg / 229.22 LBS
6 035 Gs
15.60 kg / 34.38 LBS
15596 g / 153.0 N
N/A
1 mm 97.15 kg / 214.17 LBS
10 864 Gs
14.57 kg / 32.13 LBS
14572 g / 143.0 N
87.43 kg / 192.75 LBS
~0 Gs
2 mm 90.42 kg / 199.35 LBS
10 481 Gs
13.56 kg / 29.90 LBS
13564 g / 133.1 N
81.38 kg / 179.42 LBS
~0 Gs
3 mm 83.97 kg / 185.13 LBS
10 100 Gs
12.60 kg / 27.77 LBS
12596 g / 123.6 N
75.57 kg / 166.61 LBS
~0 Gs
5 mm 71.94 kg / 158.60 LBS
9 349 Gs
10.79 kg / 23.79 LBS
10791 g / 105.9 N
64.75 kg / 142.74 LBS
~0 Gs
10 mm 47.34 kg / 104.36 LBS
7 583 Gs
7.10 kg / 15.65 LBS
7100 g / 69.7 N
42.60 kg / 93.92 LBS
~0 Gs
20 mm 19.03 kg / 41.96 LBS
4 809 Gs
2.86 kg / 6.29 LBS
2855 g / 28.0 N
17.13 kg / 37.77 LBS
~0 Gs
50 mm 1.53 kg / 3.37 LBS
1 363 Gs
0.23 kg / 0.51 LBS
229 g / 2.2 N
1.38 kg / 3.03 LBS
~0 Gs
60 mm 0.77 kg / 1.69 LBS
965 Gs
0.11 kg / 0.25 LBS
115 g / 1.1 N
0.69 kg / 1.52 LBS
~0 Gs
70 mm 0.41 kg / 0.90 LBS
706 Gs
0.06 kg / 0.14 LBS
61 g / 0.6 N
0.37 kg / 0.81 LBS
~0 Gs
80 mm 0.23 kg / 0.51 LBS
531 Gs
0.03 kg / 0.08 LBS
35 g / 0.3 N
0.21 kg / 0.46 LBS
~0 Gs
90 mm 0.14 kg / 0.30 LBS
409 Gs
0.02 kg / 0.05 LBS
21 g / 0.2 N
0.12 kg / 0.27 LBS
~0 Gs
100 mm 0.09 kg / 0.19 LBS
322 Gs
0.01 kg / 0.03 LBS
13 g / 0.1 N
0.08 kg / 0.17 LBS
~0 Gs

Table 7: Protective zones (electronics) - warnings
MP 30x6x10 / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 19.5 cm
Hearing aid 10 Gs (1.0 mT) 15.0 cm
Mechanical watch 20 Gs (2.0 mT) 12.0 cm
Phone / Smartphone 40 Gs (4.0 mT) 9.0 cm
Remote 50 Gs (5.0 mT) 8.5 cm
Payment card 400 Gs (40.0 mT) 3.5 cm
HDD hard drive 600 Gs (60.0 mT) 3.0 cm

Table 8: Dynamics (kinetic energy) - warning
MP 30x6x10 / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 22.55 km/h
(6.26 m/s)
1.00 J
30 mm 35.40 km/h
(9.83 m/s)
2.46 J
50 mm 45.52 km/h
(12.64 m/s)
4.07 J
100 mm 64.34 km/h
(17.87 m/s)
8.13 J

Table 9: Surface protection spec
MP 30x6x10 / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Construction data (Pc)
MP 30x6x10 / N38

Parameter Value SI Unit / Description
Magnetic Flux 31 585 Mx 315.8 µWb
Pc Coefficient 0.96 High (Stable)

Table 11: Physics of underwater searching
MP 30x6x10 / N38

Environment Effective steel pull Effect
Air (land) 20.71 kg Standard
Water (riverbed) 23.71 kg
(+3.00 kg buoyancy gain)
+14.5%
Corrosion warning: Remember to wipe the magnet thoroughly after removing it from water and apply a protective layer (e.g., oil) to avoid corrosion.
1. Sliding resistance

*Warning: On a vertical wall, the magnet holds merely approx. 20-30% of its nominal pull.

2. Efficiency vs thickness

*Thin steel (e.g. 0.5mm PC case) drastically reduces the holding force.

3. Heat tolerance

*For standard magnets, the safety limit is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.96

The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Engineering data and GPSR
Chemical composition
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Ecology and recycling (GPSR)
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 030197-2026
Quick Unit Converter
Magnet pull force

Magnetic Induction

Other proposals

It is ideally suited for places where solid attachment of the magnet to the substrate is required without the risk of detachment. Mounting is clean and reversible, unlike gluing. It is also often used in advertising for fixing signs and in workshops for organizing tools.
This is a crucial issue when working with model MP 30x6x10 / N38. Neodymium magnets are sintered ceramics, which means they are hard but breakable and inelastic. When tightening the screw, you must maintain great sensitivity. We recommend tightening manually with a screwdriver, not an impact driver, because excessive force will cause the ring to crack. The flat screw head should evenly press the magnet. Remember: cracking during assembly results from material properties, not a product defect.
Moisture can penetrate micro-cracks in the coating and cause oxidation of the magnet. In the place of the mounting hole, the coating is thinner and easily scratched when tightening the screw, which will become a corrosion focus. If you must use it outside, paint it with anti-corrosion paint after mounting.
A screw or bolt with a thread diameter smaller than 6 mm fits this model. For magnets with a straight hole, a conical head can act like a wedge and burst the magnet. Always check that the screw head is not larger than the outer diameter of the magnet (30 mm), so it doesn't protrude beyond the outline.
It is a magnetic ring with a diameter of 30 mm and thickness 10 mm. The key parameter here is the holding force amounting to approximately 20.71 kg (force ~203.16 N). The mounting hole diameter is precisely 6 mm.
These magnets are magnetized axially (through the thickness), which means one flat side is the N pole and the other is S. In the case of connecting two rings, make sure one is turned the right way. When ordering a larger quantity, magnets are usually packed in stacks, where they are already naturally paired.

Strengths and weaknesses of neodymium magnets.

Strengths

In addition to their magnetic capacity, neodymium magnets provide the following advantages:
  • They virtually do not lose power, because even after 10 years the decline in efficiency is only ~1% (according to literature),
  • Magnets very well resist against loss of magnetization caused by external fields,
  • By applying a smooth layer of nickel, the element gains an professional look,
  • They are known for high magnetic induction at the operating surface, which increases their power,
  • Through (adequate) combination of ingredients, they can achieve high thermal strength, allowing for action at temperatures approaching 230°C and above...
  • Considering the possibility of free forming and customization to unique solutions, magnetic components can be created in a wide range of shapes and sizes, which makes them more universal,
  • Universal use in innovative solutions – they are used in hard drives, motor assemblies, advanced medical instruments, also multitasking production systems.
  • Relatively small size with high pulling force – neodymium magnets offer strong magnetic field in tiny dimensions, which allows their use in miniature devices

Disadvantages

Disadvantages of neodymium magnets:
  • At very strong impacts they can break, therefore we advise placing them in special holders. A metal housing provides additional protection against damage, as well as increases the magnet's durability.
  • Neodymium magnets decrease their strength under the influence of heating. As soon as 80°C is exceeded, many of them start losing their force. Therefore, we recommend our special magnets marked [AH], which maintain stability even at temperatures up to 230°C
  • Magnets exposed to a humid environment can rust. Therefore while using outdoors, we suggest using waterproof magnets made of rubber, plastic or other material resistant to moisture
  • We suggest a housing - magnetic mount, due to difficulties in creating threads inside the magnet and complex forms.
  • Potential hazard to health – tiny shards of magnets pose a threat, in case of ingestion, which becomes key in the aspect of protecting the youngest. It is also worth noting that small elements of these devices can be problematic in diagnostics medical when they are in the body.
  • Due to expensive raw materials, their price is higher than average,

Pull force analysis

Breakaway strength of the magnet in ideal conditionswhat contributes to it?

The load parameter shown refers to the peak performance, obtained under optimal environment, namely:
  • on a base made of structural steel, optimally conducting the magnetic flux
  • whose thickness reaches at least 10 mm
  • with an ground contact surface
  • without any clearance between the magnet and steel
  • for force acting at a right angle (pull-off, not shear)
  • in neutral thermal conditions

Impact of factors on magnetic holding capacity in practice

Bear in mind that the magnet holding may be lower subject to elements below, in order of importance:
  • Clearance – existence of any layer (paint, dirt, air) interrupts the magnetic circuit, which reduces capacity steeply (even by 50% at 0.5 mm).
  • Force direction – catalog parameter refers to detachment vertically. When slipping, the magnet exhibits significantly lower power (often approx. 20-30% of nominal force).
  • Base massiveness – too thin sheet does not close the flux, causing part of the flux to be lost into the air.
  • Material composition – not every steel reacts the same. Alloy additives worsen the interaction with the magnet.
  • Surface structure – the smoother and more polished the surface, the better the adhesion and stronger the hold. Unevenness creates an air distance.
  • Operating temperature – neodymium magnets have a negative temperature coefficient. At higher temperatures they lose power, and in frost gain strength (up to a certain limit).

Lifting capacity testing was conducted on a smooth plate of optimal thickness, under a perpendicular pulling force, however under attempts to slide the magnet the lifting capacity is smaller. In addition, even a small distance between the magnet and the plate lowers the load capacity.

Safety rules for work with NdFeB magnets
Machining danger

Fire hazard: Neodymium dust is highly flammable. Avoid machining magnets in home conditions as this risks ignition.

Allergy Warning

Certain individuals suffer from a contact allergy to nickel, which is the typical protective layer for neodymium magnets. Frequent touching might lead to a rash. We strongly advise use safety gloves.

Power loss in heat

Regular neodymium magnets (grade N) lose power when the temperature exceeds 80°C. This process is irreversible.

Beware of splinters

Neodymium magnets are ceramic materials, meaning they are very brittle. Impact of two magnets will cause them cracking into small pieces.

Magnetic interference

Remember: rare earth magnets generate a field that confuses precision electronics. Keep a safe distance from your mobile, device, and GPS.

Danger to the youngest

NdFeB magnets are not intended for children. Swallowing several magnets can lead to them connecting inside the digestive tract, which constitutes a direct threat to life and requires immediate surgery.

Pacemakers

Health Alert: Neodymium magnets can deactivate heart devices and defibrillators. Do not approach if you have medical devices.

Electronic devices

Powerful magnetic fields can destroy records on credit cards, HDDs, and other magnetic media. Maintain a gap of min. 10 cm.

Powerful field

Handle magnets with awareness. Their immense force can surprise even experienced users. Plan your moves and do not underestimate their power.

Physical harm

Big blocks can break fingers in a fraction of a second. Do not put your hand betwixt two strong magnets.

Attention! Learn more about risks in the article: Magnet Safety Guide.
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98