MP 30x6x10 / N38 - ring magnet
ring magnet
Catalog no 030197
GTIN: 5906301812142
Diameter [±0,1 mm]
30 mm
internal diameter Ø [±0,1 mm]
6 mm
Height [±0,1 mm]
10 mm
Weight
56.55 g
Magnetization Direction
↑ axial
Load capacity
3.42 kg / 33.54 N
Magnetic Induction
248.80 mT
Coating
[NiCuNi] nickel
16.00 ZŁ with VAT / pcs + price for transport
13.01 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Looking for a better price?
Contact us by phone
+48 888 99 98 98
alternatively get in touch using
inquiry form
the contact section.
Specifications as well as structure of magnets can be verified on our
magnetic calculator.
Same-day shipping for orders placed before 14:00.
MP 30x6x10 / N38 - ring magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their long-term stability, neodymium magnets provide the following advantages:
- They do not lose their strength approximately ten years – the reduction of lifting capacity is only ~1% (according to tests),
- They are extremely resistant to demagnetization caused by external magnetic fields,
- Thanks to the shiny finish and silver coating, they have an elegant appearance,
- They have very high magnetic induction on the surface of the magnet,
- With the right combination of compounds, they reach increased thermal stability, enabling operation at or above 230°C (depending on the form),
- The ability for custom shaping as well as customization to specific needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which extends the scope of their use cases,
- Wide application in advanced technical fields – they are utilized in computer drives, electric drives, diagnostic apparatus as well as high-tech tools,
- Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in compact dimensions, which allows for use in compact constructions
Disadvantages of neodymium magnets:
- They may fracture when subjected to a sudden impact. If the magnets are exposed to external force, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture while also increases its overall durability,
- High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of synthetic coating for outdoor use,
- Using a cover – such as a magnetic holder – is advised due to the limitations in manufacturing complex structures directly in the magnet,
- Health risk linked to microscopic shards may arise, if ingested accidentally, which is significant in the protection of children. Moreover, miniature parts from these products might interfere with diagnostics if inside the body,
- High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which can restrict large-scale applications
Detachment force of the magnet in optimal conditions – what affects it?
The given holding capacity of the magnet means the highest holding force, determined in the best circumstances, that is:
- with mild steel, used as a magnetic flux conductor
- of a thickness of at least 10 mm
- with a smooth surface
- with zero air gap
- in a perpendicular direction of force
- in normal thermal conditions
Lifting capacity in practice – influencing factors
Practical lifting force is dependent on elements, listed from the most critical to the less significant:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was checked on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, whereas under attempts to slide the magnet the lifting capacity is smaller. Additionally, even a slight gap {between} the magnet and the plate lowers the lifting capacity.
Be Cautious with Neodymium Magnets
It is important to keep neodymium magnets away from children.
Remember that neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.
The magnet is coated with nickel - be careful if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can become demagnetized at high temperatures.
Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Keep neodymium magnets away from the wallet, computer, and TV.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Magnets made of neodymium are delicate as well as can easily break as well as get damaged.
Neodymium magnets are extremely delicate, and by joining them in an uncontrolled manner, they will crack. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Avoid bringing neodymium magnets close to a phone or GPS.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
Magnets may crack or crumble with careless connecting to each other. Remember not to move them to each other or have them firmly in hands at a distance less than 10 cm.
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their power can shock you.
To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Safety rules!
In order to illustrate why neodymium magnets are so dangerous, see the article - How very dangerous are powerful neodymium magnets?.