MP 30x6x10 / N38 - ring magnet
ring magnet
Catalog no 030197
GTIN: 5906301812142
Diameter
30 mm [±0,1 mm]
internal diameter Ø
6 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
50.89 g
Magnetization Direction
↑ axial
Load capacity
20.71 kg / 203.16 N
Magnetic Induction
343.81 mT / 3438 Gs
Coating
[NiCuNi] Nickel
16.00 ZŁ with VAT / pcs + price for transport
13.01 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need help making a decision?
Contact us by phone
+48 888 99 98 98
if you prefer contact us by means of
our online form
our website.
Strength along with structure of magnets can be calculated on our
magnetic calculator.
Same-day processing for orders placed before 14:00.
MP 30x6x10 / N38 - ring magnet
Specification / characteristics MP 30x6x10 / N38 - ring magnet
| properties | values |
|---|---|
| Cat. no. | 030197 |
| GTIN | 5906301812142 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter | 30 mm [±0,1 mm] |
| internal diameter Ø | 6 mm [±0,1 mm] |
| Height | 10 mm [±0,1 mm] |
| Weight | 50.89 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 20.71 kg / 203.16 N |
| Magnetic Induction ~ ? | 343.81 mT / 3438 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [Min. - Max.] ? | 12.2-12.6 | kGs |
| remenance Br [Min. - Max.] ? | 1220-1260 | T |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [Min. - Max.] ? | 36-38 | BH max MGOe |
| energy density [Min. - Max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅Cm |
| Bending strength | 250 | Mpa |
| Compressive strength | 1000~1100 | Mpa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 106 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering modeling of the assembly - technical parameters
These information constitute the outcome of a physical simulation. Results are based on algorithms for the material NdFeB. Real-world conditions might slightly differ from theoretical values. Use these calculations as a supplementary guide for designers.
MP 30x6x10 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg) | Risk Status |
|---|---|---|---|
| 0 mm |
5619 Gs
561.9 mT
|
20.71 kg / 20710.0 g
203.2 N
|
critical level |
| 1 mm |
5241 Gs
524.1 mT
|
18.01 kg / 18011.7 g
176.7 N
|
critical level |
| 2 mm |
4861 Gs
486.1 mT
|
15.50 kg / 15498.1 g
152.0 N
|
critical level |
| 3 mm |
4490 Gs
449.0 mT
|
13.22 kg / 13223.5 g
129.7 N
|
critical level |
| 5 mm |
3792 Gs
379.2 mT
|
9.43 kg / 9429.0 g
92.5 N
|
warning |
| 10 mm |
2404 Gs
240.4 mT
|
3.79 kg / 3791.3 g
37.2 N
|
warning |
| 15 mm |
1526 Gs
152.6 mT
|
1.53 kg / 1527.0 g
15.0 N
|
weak grip |
| 20 mm |
1000 Gs
100.0 mT
|
0.66 kg / 655.5 g
6.4 N
|
weak grip |
| 30 mm |
482 Gs
48.2 mT
|
0.15 kg / 152.6 g
1.5 N
|
weak grip |
| 50 mm |
161 Gs
16.1 mT
|
0.02 kg / 17.0 g
0.2 N
|
weak grip |
MP 30x6x10 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.14 kg / 4142.0 g
40.6 N
|
| 1 mm | Stal (~0.2) |
3.60 kg / 3602.0 g
35.3 N
|
| 2 mm | Stal (~0.2) |
3.10 kg / 3100.0 g
30.4 N
|
| 3 mm | Stal (~0.2) |
2.64 kg / 2644.0 g
25.9 N
|
| 5 mm | Stal (~0.2) |
1.89 kg / 1886.0 g
18.5 N
|
| 10 mm | Stal (~0.2) |
0.76 kg / 758.0 g
7.4 N
|
| 15 mm | Stal (~0.2) |
0.31 kg / 306.0 g
3.0 N
|
| 20 mm | Stal (~0.2) |
0.13 kg / 132.0 g
1.3 N
|
| 30 mm | Stal (~0.2) |
0.03 kg / 30.0 g
0.3 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 4.0 g
0.0 N
|
MP 30x6x10 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
6.21 kg / 6213.0 g
60.9 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.14 kg / 4142.0 g
40.6 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
2.07 kg / 2071.0 g
20.3 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
10.36 kg / 10355.0 g
101.6 N
|
MP 30x6x10 / N38
| Steel thickness (mm) | % power | Real pull force (kg) |
|---|---|---|
| 0.5 mm |
|
1.04 kg / 1035.5 g
10.2 N
|
| 1 mm |
|
2.59 kg / 2588.8 g
25.4 N
|
| 2 mm |
|
5.18 kg / 5177.5 g
50.8 N
|
| 5 mm |
|
12.94 kg / 12943.8 g
127.0 N
|
| 10 mm |
|
20.71 kg / 20710.0 g
203.2 N
|
MP 30x6x10 / N38
| Ambient temp. (°C) | Power loss | Remaining pull | Status |
|---|---|---|---|
| 20 °C | 0.0% |
20.71 kg / 20710.0 g
203.2 N
|
OK |
| 40 °C | -2.2% |
20.25 kg / 20254.4 g
198.7 N
|
OK |
| 60 °C | -4.4% |
19.80 kg / 19798.8 g
194.2 N
|
OK |
| 80 °C | -6.6% |
19.34 kg / 19343.1 g
189.8 N
|
|
| 100 °C | -28.8% |
14.75 kg / 14745.5 g
144.7 N
|
MP 30x6x10 / N38
| Gap (mm) | Attraction (kg) (N-S) | Repulsion (kg) (N-N) |
|---|---|---|
| 0 mm |
103.97 kg / 103971 g
1020.0 N
6 035 Gs
|
N/A |
| 1 mm |
97.15 kg / 97146 g
953.0 N
10 864 Gs
|
87.43 kg / 87431 g
857.7 N
~0 Gs
|
| 2 mm |
90.42 kg / 90424 g
887.1 N
10 481 Gs
|
81.38 kg / 81382 g
798.4 N
~0 Gs
|
| 3 mm |
83.97 kg / 83971 g
823.8 N
10 100 Gs
|
75.57 kg / 75574 g
741.4 N
~0 Gs
|
| 5 mm |
71.94 kg / 71940 g
705.7 N
9 349 Gs
|
64.75 kg / 64746 g
635.2 N
~0 Gs
|
| 10 mm |
47.34 kg / 47337 g
464.4 N
7 583 Gs
|
42.60 kg / 42603 g
417.9 N
~0 Gs
|
| 20 mm |
19.03 kg / 19034 g
186.7 N
4 809 Gs
|
17.13 kg / 17130 g
168.0 N
~0 Gs
|
| 50 mm |
1.53 kg / 1529 g
15.0 N
1 363 Gs
|
1.38 kg / 1376 g
13.5 N
~0 Gs
|
MP 30x6x10 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 19.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 15.0 cm |
| Timepiece | 20 Gs (2.0 mT) | 12.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 9.0 cm |
| Car key | 50 Gs (5.0 mT) | 8.5 cm |
| Payment card | 400 Gs (40.0 mT) | 3.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 3.0 cm |
MP 30x6x10 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
22.55 km/h
(6.26 m/s)
|
1.00 J | |
| 30 mm |
35.40 km/h
(9.83 m/s)
|
2.46 J | |
| 50 mm |
45.52 km/h
(12.64 m/s)
|
4.07 J | |
| 100 mm |
64.34 km/h
(17.87 m/s)
|
8.13 J |
MP 30x6x10 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
MP 30x6x10 / N38
| Parameter | Value | Jedn. SI / Opis |
|---|---|---|
| Strumień (Flux) | 31 585 Mx | 315.8 µWb |
| Współczynnik Pc | 0.96 | Wysoki (Stabilny) |
MP 30x6x10 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 20.71 kg | Standard |
| Water (riverbed) |
23.71 kg
(+3.00 kg Buoyancy gain)
|
+14.5% |
1. Montaż na Ścianie (Ześlizg)
*Uwaga: Na pionowej ścianie magnes utrzyma tylko ok. 20-30% tego co na suficie.
2. Wpływ Grubości Blachy
*Cienka blacha (np. obudowa PC 0.5mm) drastycznie osłabia magnes.
3. Wytrzymałość Temperaturowa
*Dla materiału N38 granica bezpieczeństwa to 80°C.
Jak rozdzielać?
Nie próbuj odrywać magnesów siłą!
Zawsze zsuwaj je na bok krawędzi stołu.
Elektronika
Trzymaj z dala od dysków HDD, kart płatniczych i telefonów.
Rozruszniki Serca
Osoby z rozrusznikiem muszą zachować dystans min. 10 cm.
Nie dla dzieci
Ryzyko połknięcia. Połknięcie dwóch magnesów grozi śmiercią.
Kruchy materiał
Magnes to ceramika! Uderzenie o inny magnes spowoduje odpryski.
Do czego użyć tego magnesu?
Sprawdzone zastosowania dla wymiaru 15x10x2 mm
Elektronika i Czujniki
Idealny jako element wyzwalający dla czujników Halla oraz kontaktronów w systemach alarmowych. Płaski kształt (2mm) pozwala na ukrycie go w wąskich szczelinach obudowy.
Modelarstwo i Druk 3D
Stosowany do tworzenia niewidocznych zamknięć w modelach drukowanych 3D. Można go wprasować w wydruk lub wkleić w kieszeń zaprojektowaną w modelu CAD.
Meble i Fronty
Używany jako "domykacz" lekkich drzwiczek szafkowych, gdzie standardowe magnesy meblowe są za grube. Wymaga wklejenia w płytkie podfrezowanie.
View more offers
Pros and cons of rare earth magnets.
Besides their tremendous field intensity, neodymium magnets offer the following advantages:
- They virtually do not lose strength, because even after 10 years the performance loss is only ~1% (according to literature),
- Magnets perfectly defend themselves against demagnetization caused by foreign field sources,
- In other words, due to the aesthetic surface of silver, the element gains visual value,
- Magnets are characterized by exceptionally strong magnetic induction on the outer side,
- Thanks to resistance to high temperature, they are able to function (depending on the shape) even at temperatures up to 230°C and higher...
- Considering the option of accurate shaping and adaptation to unique needs, magnetic components can be manufactured in a wide range of geometric configurations, which increases their versatility,
- Versatile presence in future technologies – they are commonly used in computer drives, motor assemblies, precision medical tools, also multitasking production systems.
- Compactness – despite small sizes they generate large force, making them ideal for precision applications
Disadvantages of neodymium magnets:
- Susceptibility to cracking is one of their disadvantages. Upon strong impact they can fracture. We advise keeping them in a special holder, which not only protects them against impacts but also increases their durability
- Neodymium magnets decrease their force under the influence of heating. As soon as 80°C is exceeded, many of them start losing their force. Therefore, we recommend our special magnets marked [AH], which maintain stability even at temperatures up to 230°C
- Magnets exposed to a humid environment can rust. Therefore when using outdoors, we recommend using water-impermeable magnets made of rubber, plastic or other material resistant to moisture
- Due to limitations in producing threads and complicated shapes in magnets, we recommend using a housing - magnetic mount.
- Potential hazard resulting from small fragments of magnets are risky, when accidentally swallowed, which is particularly important in the context of child health protection. Furthermore, tiny parts of these magnets are able to disrupt the diagnostic process medical in case of swallowing.
- With budget limitations the cost of neodymium magnets can be a barrier,
Highest magnetic holding force – what it depends on?
Breakaway force was determined for the most favorable conditions, assuming:
- with the use of a sheet made of special test steel, guaranteeing full magnetic saturation
- possessing a thickness of at least 10 mm to avoid saturation
- characterized by even structure
- with direct contact (no impurities)
- for force acting at a right angle (pull-off, not shear)
- in temp. approx. 20°C
Key elements affecting lifting force
Please note that the working load may be lower subject to elements below, in order of importance:
- Clearance – the presence of foreign body (rust, dirt, gap) interrupts the magnetic circuit, which reduces power rapidly (even by 50% at 0.5 mm).
- Force direction – remember that the magnet holds strongest perpendicularly. Under sliding down, the capacity drops significantly, often to levels of 20-30% of the maximum value.
- Steel thickness – too thin plate does not close the flux, causing part of the power to be lost into the air.
- Material type – ideal substrate is high-permeability steel. Cast iron may have worse magnetic properties.
- Surface quality – the smoother and more polished the surface, the better the adhesion and stronger the hold. Unevenness creates an air distance.
- Thermal environment – heating the magnet results in weakening of induction. It is worth remembering the maximum operating temperature for a given model.
* Holding force was measured on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, however under shearing force the holding force is lower. In addition, even a slight gap {between} the magnet and the plate reduces the lifting capacity.
Warnings
Precision electronics
Remember: neodymium magnets generate a field that confuses precision electronics. Maintain a separation from your mobile, device, and navigation systems.
Magnets are brittle
Despite the nickel coating, neodymium is brittle and cannot withstand shocks. Avoid impacts, as the magnet may crumble into hazardous fragments.
Medical implants
Patients with a heart stimulator have to keep an large gap from magnets. The magnetism can interfere with the operation of the life-saving device.
Choking Hazard
Product intended for adults. Small elements can be swallowed, causing serious injuries. Keep out of reach of kids and pets.
Respect the power
Exercise caution. Neodymium magnets act from a distance and connect with huge force, often quicker than you can react.
Fire risk
Fire hazard: Neodymium dust is highly flammable. Do not process magnets without safety gear as this risks ignition.
Safe distance
Avoid bringing magnets near a purse, computer, or screen. The magnetism can permanently damage these devices and erase data from cards.
Hand protection
Risk of injury: The attraction force is so immense that it can result in hematomas, pinching, and even bone fractures. Protective gloves are recommended.
Permanent damage
Regular neodymium magnets (N-type) lose power when the temperature surpasses 80°C. The loss of strength is permanent.
Sensitization to coating
Some people have a sensitization to Ni, which is the common plating for NdFeB magnets. Prolonged contact may cause dermatitis. We suggest wear safety gloves.
Important!
Details about risks in the article: Magnet Safety Guide.
