MP 30x6x10 / N38 - ring magnet
ring magnet
Catalog no 030197
GTIN/EAN: 5906301812142
Diameter
30 mm [±0,1 mm]
internal diameter Ø
6 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
50.89 g
Magnetization Direction
↑ axial
Load capacity
20.71 kg / 203.16 N
Magnetic Induction
343.81 mT / 3438 Gs
Coating
[NiCuNi] Nickel
16.00 ZŁ with VAT / pcs + price for transport
13.01 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Pick up the phone and ask
+48 888 99 98 98
otherwise contact us by means of
our online form
through our site.
Specifications as well as form of magnetic components can be tested using our
force calculator.
Orders placed before 14:00 will be shipped the same business day.
Technical - MP 30x6x10 / N38 - ring magnet
Specification / characteristics - MP 30x6x10 / N38 - ring magnet
| properties | values |
|---|---|
| Cat. no. | 030197 |
| GTIN/EAN | 5906301812142 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter | 30 mm [±0,1 mm] |
| internal diameter Ø | 6 mm [±0,1 mm] |
| Height | 10 mm [±0,1 mm] |
| Weight | 50.89 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 20.71 kg / 203.16 N |
| Magnetic Induction ~ ? | 343.81 mT / 3438 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical simulation of the assembly - data
The following information constitute the direct effect of a engineering analysis. Results are based on algorithms for the class Nd2Fe14B. Real-world parameters may deviate from the simulation results. Treat these data as a preliminary roadmap when designing systems.
Table 1: Static force (pull vs distance) - characteristics
MP 30x6x10 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
5619 Gs
561.9 mT
|
20.71 kg / 45.66 LBS
20710.0 g / 203.2 N
|
crushing |
| 1 mm |
5241 Gs
524.1 mT
|
18.01 kg / 39.71 LBS
18011.7 g / 176.7 N
|
crushing |
| 2 mm |
4861 Gs
486.1 mT
|
15.50 kg / 34.17 LBS
15498.1 g / 152.0 N
|
crushing |
| 3 mm |
4490 Gs
449.0 mT
|
13.22 kg / 29.15 LBS
13223.5 g / 129.7 N
|
crushing |
| 5 mm |
3792 Gs
379.2 mT
|
9.43 kg / 20.79 LBS
9429.0 g / 92.5 N
|
medium risk |
| 10 mm |
2404 Gs
240.4 mT
|
3.79 kg / 8.36 LBS
3791.3 g / 37.2 N
|
medium risk |
| 15 mm |
1526 Gs
152.6 mT
|
1.53 kg / 3.37 LBS
1527.0 g / 15.0 N
|
safe |
| 20 mm |
1000 Gs
100.0 mT
|
0.66 kg / 1.45 LBS
655.5 g / 6.4 N
|
safe |
| 30 mm |
482 Gs
48.2 mT
|
0.15 kg / 0.34 LBS
152.6 g / 1.5 N
|
safe |
| 50 mm |
161 Gs
16.1 mT
|
0.02 kg / 0.04 LBS
17.0 g / 0.2 N
|
safe |
Table 2: Sliding hold (vertical surface)
MP 30x6x10 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
4.14 kg / 9.13 LBS
4142.0 g / 40.6 N
|
| 1 mm | Stal (~0.2) |
3.60 kg / 7.94 LBS
3602.0 g / 35.3 N
|
| 2 mm | Stal (~0.2) |
3.10 kg / 6.83 LBS
3100.0 g / 30.4 N
|
| 3 mm | Stal (~0.2) |
2.64 kg / 5.83 LBS
2644.0 g / 25.9 N
|
| 5 mm | Stal (~0.2) |
1.89 kg / 4.16 LBS
1886.0 g / 18.5 N
|
| 10 mm | Stal (~0.2) |
0.76 kg / 1.67 LBS
758.0 g / 7.4 N
|
| 15 mm | Stal (~0.2) |
0.31 kg / 0.67 LBS
306.0 g / 3.0 N
|
| 20 mm | Stal (~0.2) |
0.13 kg / 0.29 LBS
132.0 g / 1.3 N
|
| 30 mm | Stal (~0.2) |
0.03 kg / 0.07 LBS
30.0 g / 0.3 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.01 LBS
4.0 g / 0.0 N
|
Table 3: Vertical assembly (shearing) - vertical pull
MP 30x6x10 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
6.21 kg / 13.70 LBS
6213.0 g / 60.9 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
4.14 kg / 9.13 LBS
4142.0 g / 40.6 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
2.07 kg / 4.57 LBS
2071.0 g / 20.3 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
10.36 kg / 22.83 LBS
10355.0 g / 101.6 N
|
Table 4: Material efficiency (saturation) - sheet metal selection
MP 30x6x10 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.04 kg / 2.28 LBS
1035.5 g / 10.2 N
|
| 1 mm |
|
2.59 kg / 5.71 LBS
2588.8 g / 25.4 N
|
| 2 mm |
|
5.18 kg / 11.41 LBS
5177.5 g / 50.8 N
|
| 3 mm |
|
7.77 kg / 17.12 LBS
7766.3 g / 76.2 N
|
| 5 mm |
|
12.94 kg / 28.54 LBS
12943.8 g / 127.0 N
|
| 10 mm |
|
20.71 kg / 45.66 LBS
20710.0 g / 203.2 N
|
| 11 mm |
|
20.71 kg / 45.66 LBS
20710.0 g / 203.2 N
|
| 12 mm |
|
20.71 kg / 45.66 LBS
20710.0 g / 203.2 N
|
Table 5: Thermal stability (stability) - power drop
MP 30x6x10 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
20.71 kg / 45.66 LBS
20710.0 g / 203.2 N
|
OK |
| 40 °C | -2.2% |
20.25 kg / 44.65 LBS
20254.4 g / 198.7 N
|
OK |
| 60 °C | -4.4% |
19.80 kg / 43.65 LBS
19798.8 g / 194.2 N
|
OK |
| 80 °C | -6.6% |
19.34 kg / 42.64 LBS
19343.1 g / 189.8 N
|
|
| 100 °C | -28.8% |
14.75 kg / 32.51 LBS
14745.5 g / 144.7 N
|
Table 6: Magnet-Magnet interaction (attraction) - field range
MP 30x6x10 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
103.97 kg / 229.22 LBS
6 035 Gs
|
15.60 kg / 34.38 LBS
15596 g / 153.0 N
|
N/A |
| 1 mm |
97.15 kg / 214.17 LBS
10 864 Gs
|
14.57 kg / 32.13 LBS
14572 g / 143.0 N
|
87.43 kg / 192.75 LBS
~0 Gs
|
| 2 mm |
90.42 kg / 199.35 LBS
10 481 Gs
|
13.56 kg / 29.90 LBS
13564 g / 133.1 N
|
81.38 kg / 179.42 LBS
~0 Gs
|
| 3 mm |
83.97 kg / 185.13 LBS
10 100 Gs
|
12.60 kg / 27.77 LBS
12596 g / 123.6 N
|
75.57 kg / 166.61 LBS
~0 Gs
|
| 5 mm |
71.94 kg / 158.60 LBS
9 349 Gs
|
10.79 kg / 23.79 LBS
10791 g / 105.9 N
|
64.75 kg / 142.74 LBS
~0 Gs
|
| 10 mm |
47.34 kg / 104.36 LBS
7 583 Gs
|
7.10 kg / 15.65 LBS
7100 g / 69.7 N
|
42.60 kg / 93.92 LBS
~0 Gs
|
| 20 mm |
19.03 kg / 41.96 LBS
4 809 Gs
|
2.86 kg / 6.29 LBS
2855 g / 28.0 N
|
17.13 kg / 37.77 LBS
~0 Gs
|
| 50 mm |
1.53 kg / 3.37 LBS
1 363 Gs
|
0.23 kg / 0.51 LBS
229 g / 2.2 N
|
1.38 kg / 3.03 LBS
~0 Gs
|
| 60 mm |
0.77 kg / 1.69 LBS
965 Gs
|
0.11 kg / 0.25 LBS
115 g / 1.1 N
|
0.69 kg / 1.52 LBS
~0 Gs
|
| 70 mm |
0.41 kg / 0.90 LBS
706 Gs
|
0.06 kg / 0.14 LBS
61 g / 0.6 N
|
0.37 kg / 0.81 LBS
~0 Gs
|
| 80 mm |
0.23 kg / 0.51 LBS
531 Gs
|
0.03 kg / 0.08 LBS
35 g / 0.3 N
|
0.21 kg / 0.46 LBS
~0 Gs
|
| 90 mm |
0.14 kg / 0.30 LBS
409 Gs
|
0.02 kg / 0.05 LBS
21 g / 0.2 N
|
0.12 kg / 0.27 LBS
~0 Gs
|
| 100 mm |
0.09 kg / 0.19 LBS
322 Gs
|
0.01 kg / 0.03 LBS
13 g / 0.1 N
|
0.08 kg / 0.17 LBS
~0 Gs
|
Table 7: Hazards (implants) - precautionary measures
MP 30x6x10 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 19.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 15.0 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 12.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 9.0 cm |
| Car key | 50 Gs (5.0 mT) | 8.5 cm |
| Payment card | 400 Gs (40.0 mT) | 3.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 3.0 cm |
Table 8: Dynamics (kinetic energy) - collision effects
MP 30x6x10 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
22.55 km/h
(6.26 m/s)
|
1.00 J | |
| 30 mm |
35.40 km/h
(9.83 m/s)
|
2.46 J | |
| 50 mm |
45.52 km/h
(12.64 m/s)
|
4.07 J | |
| 100 mm |
64.34 km/h
(17.87 m/s)
|
8.13 J |
Table 9: Corrosion resistance
MP 30x6x10 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Flux)
MP 30x6x10 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 31 585 Mx | 315.8 µWb |
| Pc Coefficient | 0.96 | High (Stable) |
Table 11: Hydrostatics and buoyancy
MP 30x6x10 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 20.71 kg | Standard |
| Water (riverbed) |
23.71 kg
(+3.00 kg buoyancy gain)
|
+14.5% |
1. Vertical hold
*Note: On a vertical surface, the magnet holds only ~20% of its max power.
2. Efficiency vs thickness
*Thin metal sheet (e.g. 0.5mm PC case) drastically limits the holding force.
3. Heat tolerance
*For standard magnets, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.96
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Environmental data
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other deals
Strengths and weaknesses of Nd2Fe14B magnets.
Advantages
- They virtually do not lose power, because even after 10 years the performance loss is only ~1% (in laboratory conditions),
- Magnets perfectly resist against loss of magnetization caused by external fields,
- In other words, due to the shiny surface of nickel, the element gains visual value,
- Neodymium magnets ensure maximum magnetic induction on a contact point, which ensures high operational effectiveness,
- Due to their durability and thermal resistance, neodymium magnets are capable of operate (depending on the form) even at high temperatures reaching 230°C or more...
- Possibility of individual shaping as well as modifying to precise conditions,
- Key role in modern technologies – they serve a role in HDD drives, electromotive mechanisms, advanced medical instruments, also complex engineering applications.
- Relatively small size with high pulling force – neodymium magnets offer strong magnetic field in small dimensions, which allows their use in miniature devices
Limitations
- They are fragile upon too strong impacts. To avoid cracks, it is worth securing magnets using a steel holder. Such protection not only protects the magnet but also increases its resistance to damage
- Neodymium magnets lose their force under the influence of heating. As soon as 80°C is exceeded, many of them start losing their power. Therefore, we recommend our special magnets marked [AH], which maintain stability even at temperatures up to 230°C
- Due to the susceptibility of magnets to corrosion in a humid environment, we advise using waterproof magnets made of rubber, plastic or other material stable to moisture, in case of application outdoors
- Due to limitations in producing nuts and complicated forms in magnets, we recommend using a housing - magnetic holder.
- Potential hazard related to microscopic parts of magnets can be dangerous, when accidentally swallowed, which gains importance in the aspect of protecting the youngest. It is also worth noting that small elements of these magnets are able to disrupt the diagnostic process medical after entering the body.
- Due to neodymium price, their price is higher than average,
Pull force analysis
Breakaway strength of the magnet in ideal conditions – what it depends on?
- with the application of a sheet made of special test steel, ensuring full magnetic saturation
- possessing a massiveness of at least 10 mm to avoid saturation
- characterized by smoothness
- with zero gap (without paint)
- for force acting at a right angle (in the magnet axis)
- at ambient temperature approx. 20 degrees Celsius
Determinants of lifting force in real conditions
- Gap between magnet and steel – even a fraction of a millimeter of separation (caused e.g. by varnish or unevenness) drastically reduces the pulling force, often by half at just 0.5 mm.
- Pull-off angle – note that the magnet holds strongest perpendicularly. Under sliding down, the holding force drops drastically, often to levels of 20-30% of the maximum value.
- Substrate thickness – to utilize 100% power, the steel must be sufficiently thick. Thin sheet restricts the lifting capacity (the magnet "punches through" it).
- Material composition – different alloys reacts the same. High carbon content worsen the attraction effect.
- Smoothness – full contact is obtained only on polished steel. Rough texture create air cushions, weakening the magnet.
- Temperature influence – hot environment reduces pulling force. Exceeding the limit temperature can permanently damage the magnet.
Lifting capacity testing was conducted on a smooth plate of optimal thickness, under a perpendicular pulling force, however under shearing force the lifting capacity is smaller. Additionally, even a small distance between the magnet’s surface and the plate lowers the lifting capacity.
Warnings
Protect data
Equipment safety: Strong magnets can ruin payment cards and delicate electronics (heart implants, medical aids, timepieces).
Serious injuries
Protect your hands. Two large magnets will join immediately with a force of massive weight, destroying anything in their path. Be careful!
Health Danger
Warning for patients: Powerful magnets affect electronics. Keep minimum 30 cm distance or request help to handle the magnets.
Protective goggles
NdFeB magnets are sintered ceramics, meaning they are fragile like glass. Collision of two magnets will cause them cracking into small pieces.
Machining danger
Mechanical processing of neodymium magnets poses a fire risk. Neodymium dust oxidizes rapidly with oxygen and is hard to extinguish.
Avoid contact if allergic
It is widely known that nickel (standard magnet coating) is a strong allergen. If your skin reacts to metals, prevent direct skin contact or opt for coated magnets.
Operating temperature
Watch the temperature. Heating the magnet to high heat will ruin its magnetic structure and pulling force.
GPS Danger
GPS units and smartphones are extremely sensitive to magnetism. Direct contact with a powerful NdFeB magnet can permanently damage the sensors in your phone.
This is not a toy
Absolutely store magnets out of reach of children. Choking hazard is significant, and the consequences of magnets clamping inside the body are life-threatening.
Handling rules
Before use, check safety instructions. Uncontrolled attraction can break the magnet or hurt your hand. Think ahead.
