MW 25x6 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010050
GTIN/EAN: 5906301810490
Diameter Ø
25 mm [±0,1 mm]
Height
6 mm [±0,1 mm]
Weight
22.09 g
Magnetization Direction
↑ axial
Load capacity
10.27 kg / 100.71 N
Magnetic Induction
268.21 mT / 2682 Gs
Coating
[NiCuNi] Nickel
7.40 ZŁ with VAT / pcs + price for transport
6.02 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Contact us by phone
+48 22 499 98 98
or drop us a message via
our online form
the contact section.
Specifications as well as shape of neodymium magnets can be checked on our
our magnetic calculator.
Orders submitted before 14:00 will be dispatched today!
Technical - MW 25x6 / N38 - cylindrical magnet
Specification / characteristics - MW 25x6 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010050 |
| GTIN/EAN | 5906301810490 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 25 mm [±0,1 mm] |
| Height | 6 mm [±0,1 mm] |
| Weight | 22.09 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 10.27 kg / 100.71 N |
| Magnetic Induction ~ ? | 268.21 mT / 2682 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical modeling of the magnet - data
The following values represent the result of a mathematical simulation. Results rely on models for the material Nd2Fe14B. Actual performance might slightly differ. Treat these data as a preliminary roadmap when designing systems.
Table 1: Static force (pull vs distance) - power drop
MW 25x6 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
2682 Gs
268.2 mT
|
10.27 kg / 22.64 lbs
10270.0 g / 100.7 N
|
dangerous! |
| 1 mm |
2535 Gs
253.5 mT
|
9.18 kg / 20.23 lbs
9177.2 g / 90.0 N
|
strong |
| 2 mm |
2363 Gs
236.3 mT
|
7.97 kg / 17.57 lbs
7971.8 g / 78.2 N
|
strong |
| 3 mm |
2176 Gs
217.6 mT
|
6.76 kg / 14.91 lbs
6761.0 g / 66.3 N
|
strong |
| 5 mm |
1793 Gs
179.3 mT
|
4.59 kg / 10.13 lbs
4592.7 g / 45.1 N
|
strong |
| 10 mm |
1013 Gs
101.3 mT
|
1.46 kg / 3.23 lbs
1464.5 g / 14.4 N
|
safe |
| 15 mm |
565 Gs
56.5 mT
|
0.46 kg / 1.00 lbs
455.3 g / 4.5 N
|
safe |
| 20 mm |
330 Gs
33.0 mT
|
0.16 kg / 0.34 lbs
155.7 g / 1.5 N
|
safe |
| 30 mm |
134 Gs
13.4 mT
|
0.03 kg / 0.06 lbs
25.6 g / 0.3 N
|
safe |
| 50 mm |
36 Gs
3.6 mT
|
0.00 kg / 0.00 lbs
1.9 g / 0.0 N
|
safe |
Table 2: Sliding hold (vertical surface)
MW 25x6 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
2.05 kg / 4.53 lbs
2054.0 g / 20.1 N
|
| 1 mm | Stal (~0.2) |
1.84 kg / 4.05 lbs
1836.0 g / 18.0 N
|
| 2 mm | Stal (~0.2) |
1.59 kg / 3.51 lbs
1594.0 g / 15.6 N
|
| 3 mm | Stal (~0.2) |
1.35 kg / 2.98 lbs
1352.0 g / 13.3 N
|
| 5 mm | Stal (~0.2) |
0.92 kg / 2.02 lbs
918.0 g / 9.0 N
|
| 10 mm | Stal (~0.2) |
0.29 kg / 0.64 lbs
292.0 g / 2.9 N
|
| 15 mm | Stal (~0.2) |
0.09 kg / 0.20 lbs
92.0 g / 0.9 N
|
| 20 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
32.0 g / 0.3 N
|
| 30 mm | Stal (~0.2) |
0.01 kg / 0.01 lbs
6.0 g / 0.1 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Wall mounting (shearing) - behavior on slippery surfaces
MW 25x6 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
3.08 kg / 6.79 lbs
3081.0 g / 30.2 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
2.05 kg / 4.53 lbs
2054.0 g / 20.1 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
1.03 kg / 2.26 lbs
1027.0 g / 10.1 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
5.14 kg / 11.32 lbs
5135.0 g / 50.4 N
|
Table 4: Steel thickness (substrate influence) - power losses
MW 25x6 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.51 kg / 1.13 lbs
513.5 g / 5.0 N
|
| 1 mm |
|
1.28 kg / 2.83 lbs
1283.8 g / 12.6 N
|
| 2 mm |
|
2.57 kg / 5.66 lbs
2567.5 g / 25.2 N
|
| 3 mm |
|
3.85 kg / 8.49 lbs
3851.3 g / 37.8 N
|
| 5 mm |
|
6.42 kg / 14.15 lbs
6418.7 g / 63.0 N
|
| 10 mm |
|
10.27 kg / 22.64 lbs
10270.0 g / 100.7 N
|
| 11 mm |
|
10.27 kg / 22.64 lbs
10270.0 g / 100.7 N
|
| 12 mm |
|
10.27 kg / 22.64 lbs
10270.0 g / 100.7 N
|
Table 5: Thermal resistance (stability) - resistance threshold
MW 25x6 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
10.27 kg / 22.64 lbs
10270.0 g / 100.7 N
|
OK |
| 40 °C | -2.2% |
10.04 kg / 22.14 lbs
10044.1 g / 98.5 N
|
OK |
| 60 °C | -4.4% |
9.82 kg / 21.65 lbs
9818.1 g / 96.3 N
|
|
| 80 °C | -6.6% |
9.59 kg / 21.15 lbs
9592.2 g / 94.1 N
|
|
| 100 °C | -28.8% |
7.31 kg / 16.12 lbs
7312.2 g / 71.7 N
|
Table 6: Two magnets (repulsion) - forces in the system
MW 25x6 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Sliding Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
21.76 kg / 47.98 lbs
4 291 Gs
|
3.26 kg / 7.20 lbs
3264 g / 32.0 N
|
N/A |
| 1 mm |
20.66 kg / 45.54 lbs
5 225 Gs
|
3.10 kg / 6.83 lbs
3098 g / 30.4 N
|
18.59 kg / 40.98 lbs
~0 Gs
|
| 2 mm |
19.45 kg / 42.87 lbs
5 070 Gs
|
2.92 kg / 6.43 lbs
2917 g / 28.6 N
|
17.50 kg / 38.58 lbs
~0 Gs
|
| 3 mm |
18.18 kg / 40.09 lbs
4 902 Gs
|
2.73 kg / 6.01 lbs
2727 g / 26.8 N
|
16.36 kg / 36.08 lbs
~0 Gs
|
| 5 mm |
15.60 kg / 34.39 lbs
4 541 Gs
|
2.34 kg / 5.16 lbs
2340 g / 23.0 N
|
14.04 kg / 30.95 lbs
~0 Gs
|
| 10 mm |
9.73 kg / 21.46 lbs
3 587 Gs
|
1.46 kg / 3.22 lbs
1460 g / 14.3 N
|
8.76 kg / 19.31 lbs
~0 Gs
|
| 20 mm |
3.10 kg / 6.84 lbs
2 025 Gs
|
0.47 kg / 1.03 lbs
465 g / 4.6 N
|
2.79 kg / 6.16 lbs
~0 Gs
|
| 50 mm |
0.13 kg / 0.28 lbs
409 Gs
|
0.02 kg / 0.04 lbs
19 g / 0.2 N
|
0.11 kg / 0.25 lbs
~0 Gs
|
| 60 mm |
0.05 kg / 0.12 lbs
268 Gs
|
0.01 kg / 0.02 lbs
8 g / 0.1 N
|
0.05 kg / 0.11 lbs
~0 Gs
|
| 70 mm |
0.03 kg / 0.06 lbs
183 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.02 kg / 0.05 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.03 lbs
131 Gs
|
0.00 kg / 0.00 lbs
2 g / 0.0 N
|
0.01 kg / 0.03 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.02 lbs
96 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.01 lbs
72 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Hazards (electronics) - precautionary measures
MW 25x6 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 10.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 8.0 cm |
| Timepiece | 20 Gs (2.0 mT) | 6.5 cm |
| Mobile device | 40 Gs (4.0 mT) | 5.0 cm |
| Remote | 50 Gs (5.0 mT) | 4.5 cm |
| Payment card | 400 Gs (40.0 mT) | 2.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.5 cm |
Table 8: Dynamics (cracking risk) - collision effects
MW 25x6 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
23.60 km/h
(6.56 m/s)
|
0.47 J | |
| 30 mm |
37.72 km/h
(10.48 m/s)
|
1.21 J | |
| 50 mm |
48.63 km/h
(13.51 m/s)
|
2.02 J | |
| 100 mm |
68.77 km/h
(19.10 m/s)
|
4.03 J |
Table 9: Corrosion resistance
MW 25x6 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Pc)
MW 25x6 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 14 740 Mx | 147.4 µWb |
| Pc Coefficient | 0.34 | Low (Flat) |
Table 11: Physics of underwater searching
MW 25x6 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 10.27 kg | Standard |
| Water (riverbed) |
11.76 kg
(+1.49 kg buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Caution: On a vertical surface, the magnet retains merely ~20% of its perpendicular strength.
2. Steel thickness impact
*Thin steel (e.g. computer case) drastically weakens the holding force.
3. Thermal stability
*For N38 material, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.34
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other products
Advantages and disadvantages of Nd2Fe14B magnets.
Pros
- They do not lose power, even during nearly 10 years – the drop in power is only ~1% (theoretically),
- They have excellent resistance to magnetic field loss as a result of opposing magnetic fields,
- In other words, due to the smooth surface of gold, the element is aesthetically pleasing,
- Neodymium magnets achieve maximum magnetic induction on a small area, which allows for strong attraction,
- Thanks to resistance to high temperature, they can operate (depending on the shape) even at temperatures up to 230°C and higher...
- Thanks to freedom in shaping and the ability to customize to client solutions,
- Huge importance in modern industrial fields – they find application in magnetic memories, electric drive systems, advanced medical instruments, also other advanced devices.
- Relatively small size with high pulling force – neodymium magnets offer impressive pulling force in tiny dimensions, which allows their use in compact constructions
Cons
- To avoid cracks under impact, we suggest using special steel housings. Such a solution protects the magnet and simultaneously increases its durability.
- When exposed to high temperature, neodymium magnets experience a drop in strength. Often, when the temperature exceeds 80°C, their strength decreases (depending on the size and shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- Due to the susceptibility of magnets to corrosion in a humid environment, we advise using waterproof magnets made of rubber, plastic or other material stable to moisture, in case of application outdoors
- Limited ability of creating threads in the magnet and complex shapes - recommended is a housing - magnet mounting.
- Health risk resulting from small fragments of magnets pose a threat, if swallowed, which gains importance in the context of child health protection. Furthermore, tiny parts of these products are able to be problematic in diagnostics medical in case of swallowing.
- With large orders the cost of neodymium magnets can be a barrier,
Pull force analysis
Magnetic strength at its maximum – what contributes to it?
- with the use of a sheet made of special test steel, ensuring full magnetic saturation
- possessing a thickness of at least 10 mm to avoid saturation
- with a plane free of scratches
- without the slightest air gap between the magnet and steel
- during detachment in a direction perpendicular to the mounting surface
- in stable room temperature
Determinants of lifting force in real conditions
- Space between surfaces – even a fraction of a millimeter of distance (caused e.g. by veneer or dirt) diminishes the pulling force, often by half at just 0.5 mm.
- Force direction – note that the magnet has greatest strength perpendicularly. Under shear forces, the capacity drops significantly, often to levels of 20-30% of the maximum value.
- Metal thickness – the thinner the sheet, the weaker the hold. Part of the magnetic field passes through the material instead of generating force.
- Metal type – different alloys reacts the same. High carbon content worsen the attraction effect.
- Smoothness – full contact is obtained only on smooth steel. Rough texture reduce the real contact area, weakening the magnet.
- Temperature influence – high temperature weakens pulling force. Exceeding the limit temperature can permanently demagnetize the magnet.
Lifting capacity testing was performed on a smooth plate of optimal thickness, under a perpendicular pulling force, however under attempts to slide the magnet the holding force is lower. Additionally, even a minimal clearance between the magnet’s surface and the plate reduces the lifting capacity.
H&S for magnets
Warning for heart patients
Patients with a pacemaker must maintain an absolute distance from magnets. The magnetic field can disrupt the operation of the life-saving device.
Do not overheat magnets
Monitor thermal conditions. Exposing the magnet to high heat will ruin its properties and pulling force.
Protect data
Device Safety: Neodymium magnets can damage data carriers and delicate electronics (heart implants, medical aids, mechanical watches).
Fire warning
Fire warning: Neodymium dust is explosive. Do not process magnets in home conditions as this risks ignition.
Allergy Warning
Certain individuals have a contact allergy to Ni, which is the typical protective layer for NdFeB magnets. Prolonged contact may cause skin redness. We strongly advise use safety gloves.
GPS and phone interference
GPS units and smartphones are extremely sensitive to magnetism. Close proximity with a powerful NdFeB magnet can ruin the internal compass in your phone.
Serious injuries
Protect your hands. Two large magnets will join immediately with a force of massive weight, crushing anything in their path. Be careful!
Powerful field
Handle with care. Rare earth magnets act from a long distance and connect with massive power, often faster than you can react.
Danger to the youngest
These products are not suitable for play. Accidental ingestion of multiple magnets can lead to them connecting inside the digestive tract, which poses a critical condition and requires urgent medical intervention.
Shattering risk
Neodymium magnets are ceramic materials, which means they are very brittle. Clashing of two magnets leads to them shattering into small pieces.
