tel: +48 888 99 98 98

neodymium magnets

We provide blue color magnetic Nd2Fe14B - our offer. All "magnets" in our store are available for immediate delivery (see the list). Check out the magnet pricing for more details check the magnet price list

Magnet for treasure hunters F300 GOLD

Where to buy very strong neodymium magnet? Magnet holders in airtight, solid steel enclosure are ideally suited for use in difficult weather conditions, including during rain and snow see...

magnets with holders

Holders with magnets can be used to improve production, exploring underwater areas, or finding space rocks from gold check...

Shipping is shipped if the order is placed before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

RM R8 ULTRA - 13000 Gs / N52 - magnetic distributor

magnetic distributor

Catalog no 280400

GTIN: 5906301814498

5

Weight

382 g

Magnetization Direction

↑ axial

Coating

[NiCuNi] nickel

200.00 with VAT / pcs + price for transport

162.60 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
162.60 ZŁ
200.00 ZŁ
price from 5 pcs
152.84 ZŁ
188.00 ZŁ
price from 10 pcs
143.09 ZŁ
176.00 ZŁ

Hunting for a discount?

Call us now +48 888 99 98 98 if you prefer get in touch via form the contact page.
Weight along with form of neodymium magnets can be estimated using our force calculator.

Order by 14:00 and we’ll ship today!

RM R8 ULTRA - 13000 Gs / N52 - magnetic distributor

Specification/characteristics RM R8 ULTRA - 13000 Gs / N52 - magnetic distributor
properties
values
Cat. no.
280400
GTIN
5906301814498
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Weight
382 g [±0,1 mm]
Magnetization Direction
↑ axial
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Anti-theft tag detachers, such as those utilizing neodymium magnets, are a key component of store security systems. Their principle of operation relies on neodymium magnets that neutralize the magnetic lock in the tag, enabling quick and safe removal of the security tag at the checkout. They quickly detach tags, minimizing delays in customer service, which is particularly useful in clothing stores, electronics shops, or those selling high-value alcohol. Advantages include ease of use, durability, and versatility, such as round, rectangular, or Sensormatic tags, like those in models RM®#6 from DHIT or Ultra 12000 Gs. Additionally, they provide strong protection against theft, reducing the possibility of goods being taken with an active security tag. It is crucial that detachers are stored in a location inaccessible to unauthorized individuals to enhance the security of the anti-theft system.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their consistent magnetism, neodymium magnets have these key benefits:

  • They have constant strength, and over around 10 years their attraction force decreases symbolically – ~1% (in testing),
  • They show exceptional resistance to demagnetization from outside magnetic sources,
  • By applying a bright layer of silver, the element gains a modern look,
  • Magnetic induction on the surface of these magnets is notably high,
  • Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
  • With the option for fine forming and targeted design, these magnets can be produced in numerous shapes and sizes, greatly improving engineering flexibility,
  • Key role in advanced technical fields – they serve a purpose in HDDs, electromechanical systems, clinical machines along with other advanced devices,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in compact dimensions, which makes them useful in miniature devices

Disadvantages of NdFeB magnets:

  • They may fracture when subjected to a strong impact. If the magnets are exposed to physical collisions, we recommend in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage while also increases its overall robustness,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a wet environment. For outdoor use, we recommend using sealed magnets, such as those made of polymer,
  • Limited ability to create threads in the magnet – the use of a magnetic holder is recommended,
  • Possible threat linked to microscopic shards may arise, in case of ingestion, which is significant in the health of young users. Furthermore, minuscule fragments from these magnets can complicate medical imaging when ingested,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Maximum lifting force for a neodymium magnet – what affects it?

The given strength of the magnet means the optimal strength, assessed in the best circumstances, specifically:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with no separation
  • under perpendicular detachment force
  • in normal thermal conditions

Lifting capacity in practice – influencing factors

Practical lifting force is dependent on elements, by priority:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on a smooth plate of suitable thickness, under a perpendicular pulling force, in contrast under shearing force the load capacity is reduced by as much as 5 times. In addition, even a slight gap {between} the magnet’s surface and the plate lowers the lifting capacity.

Handle with Care: Neodymium Magnets

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets may crack or alternatively crumble with careless joining to each other. Remember not to approach them to each other or hold them firmly in hands at a distance less than 10 cm.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are among the strongest magnets on Earth. The astonishing force they generate between each other can shock you.

To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

 It is important to maintain neodymium magnets away from children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Magnets made of neodymium are known for being fragile, which can cause them to crumble.

Neodymium magnets are delicate as well as will shatter if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium magnets can become demagnetized at high temperatures.

While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Warning!

In order to show why neodymium magnets are so dangerous, read the article - How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98