RM R8 ULTRA - 13000 Gs / N52 - magnetic distributor
magnetic distributor
Catalog no 280400
GTIN: 5906301814498
Weight
382 g
Magnetization Direction
↑ axial
Coating
[NiCuNi] nickel
200.00 ZŁ with VAT / pcs + price for transport
162.60 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Looking for a better price?
Contact us by phone
+48 22 499 98 98
if you prefer let us know by means of
inquiry form
the contact section.
Parameters along with structure of neodymium magnets can be reviewed with our
power calculator.
Same-day processing for orders placed before 14:00.
RM R8 ULTRA - 13000 Gs / N52 - magnetic distributor
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their magnetic efficiency, neodymium magnets provide the following advantages:
- They have stable power, and over around ten years their attraction force decreases symbolically – ~1% (according to theory),
- They show superior resistance to demagnetization from external field exposure,
- By applying a reflective layer of silver, the element gains a modern look,
- Magnetic induction on the surface of these magnets is very strong,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- With the option for customized forming and targeted design, these magnets can be produced in numerous shapes and sizes, greatly improving design adaptation,
- Significant impact in advanced technical fields – they are utilized in hard drives, electric motors, healthcare devices as well as high-tech tools,
- Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in compact dimensions, which allows for use in miniature devices
Disadvantages of neodymium magnets:
- They are prone to breaking when subjected to a strong impact. If the magnets are exposed to mechanical hits, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks while also enhances its overall resistance,
- They lose power at increased temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a damp environment. For outdoor use, we recommend using waterproof magnets, such as those made of non-metallic materials,
- The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is risky,
- Safety concern related to magnet particles may arise, in case of ingestion, which is notable in the family environments. It should also be noted that minuscule fragments from these devices have the potential to interfere with diagnostics when ingested,
- Due to expensive raw materials, their cost is relatively high,
Best holding force of the magnet in ideal parameters – what contributes to it?
The given lifting capacity of the magnet corresponds to the maximum lifting force, calculated in ideal conditions, that is:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- having a thickness of no less than 10 millimeters
- with a refined outer layer
- with no separation
- with vertical force applied
- at room temperature
Key elements affecting lifting force
The lifting capacity of a magnet depends on in practice the following factors, according to their importance:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was tested on the plate surface of 20 mm thickness, when a perpendicular force was applied, however under parallel forces the lifting capacity is smaller. In addition, even a small distance {between} the magnet and the plate lowers the load capacity.
Precautions
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets should not be in the vicinity children.
Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Keep neodymium magnets away from people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.
In the situation of placing a finger in the path of a neodymium magnet, in such a case, a cut or even a fracture may occur.
Neodymium magnets are the most powerful magnets ever created, and their power can shock you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Neodymium magnets produce strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.
Do not bring neodymium magnets close to GPS and smartphones.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Magnets made of neodymium are particularly delicate, resulting in shattering.
Neodymium magnets are fragile and will shatter if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.
Pay attention!
So that know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous powerful neodymium magnets.