tel: +48 22 499 98 98

neodymium magnets

We offer blue color magnets Nd2Fe14B - our proposal. Practically all "magnets" in our store are available for immediate purchase (see the list). Check out the magnet pricing for more details see the magnet price list

Magnet for treasure hunters F300 GOLD

Where to purchase strong magnet? Holders with magnets in solid and airtight enclosure are ideally suited for use in difficult weather, including during rain and snow read...

magnetic holders

Magnetic holders can be applied to improve production processes, underwater discoveries, or finding meteors from gold more information...

We promise to ship your order if the order is placed by 2:00 PM on working days.

Dhit sp. z o.o.
Product available Ships today (order by 14:00)

SMZR 25x175 / N52 - magnetic separator with handle

magnetic separator with handle

Catalog no 140443

GTIN: 5906301813491

5

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

175 mm

Weight

0.01 g

492.00 with VAT / pcs + price for transport

400.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
400.00 ZŁ
492.00 ZŁ
price from 5 pcs
352.00 ZŁ
432.96 ZŁ

Do you have doubts?

Call us now +48 22 499 98 98 alternatively get in touch using inquiry form the contact form page.
Parameters and structure of a magnet can be tested with our magnetic calculator.

Orders submitted before 14:00 will be dispatched today!

SMZR 25x175 / N52 - magnetic separator with handle

Specification/characteristics SMZR 25x175 / N52 - magnetic separator with handle
properties
values
Cat. no.
140443
GTIN
5906301813491
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
175 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

It is an essential item in every scrap yard and waste sorting plant. Thanks to it, you can easily assess the value of scrap. It is also useful for extracting small steel elements from crates, ash, or sand.
The magnet 'catches' iron but remains indifferent to aluminum, copper, and brass. If the magnet does not attract the element, it is likely a non-ferrous metal or acid-resistant steel.
Neodymium magnets are more compact and effective for all-day work. Thanks to this, work is more comfortable, and detection is faster and more reliable. It is a modern solution replacing heavy ferrite magnets.
The structure consists of a sealed can protecting the magnet and an ergonomic handle. Tool ergonomics are crucial for frequent use. Thanks to this construction, the separator is resistant to harsh conditions in the scrap yard.
In this model, collected metal must be pulled off manually (wearing a work glove). If you are looking for automatic release, ask about models with a release system. In the case of strong magnets, it is easiest to slide the metal to the side of the housing.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their tremendous field intensity, neodymium magnets offer the following advantages:

  • They have stable power, and over around ten years their attraction force decreases symbolically – ~1% (according to theory),
  • They show exceptional resistance to demagnetization from external field exposure,
  • The use of a decorative gold surface provides a refined finish,
  • They have very high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
  • The ability for precise shaping and customization to individual needs – neodymium magnets can be manufactured in multiple variants of geometries, which extends the scope of their use cases,
  • Important function in cutting-edge sectors – they serve a purpose in HDDs, rotating machines, medical equipment as well as high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in compact dimensions, which makes them useful in compact constructions

Disadvantages of magnetic elements:

  • They are prone to breaking when subjected to a powerful impact. If the magnets are exposed to external force, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from fracture and enhances its overall robustness,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to damp air can oxidize. Therefore, for outdoor applications, we suggest waterproof types made of rubber,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing threads directly in the magnet,
  • Potential hazard linked to microscopic shards may arise, when consumed by mistake, which is important in the context of child safety. Moreover, tiny components from these products can interfere with diagnostics when ingested,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Detachment force of the magnet in optimal conditionswhat contributes to it?

The given pulling force of the magnet means the maximum force, measured under optimal conditions, specifically:

  • with mild steel, serving as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with no separation
  • under perpendicular detachment force
  • under standard ambient temperature

Magnet lifting force in use – key factors

The lifting capacity of a magnet is influenced by in practice the following factors, from primary to secondary:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined with the use of a smooth steel plate of optimal thickness (min. 20 mm), under perpendicular detachment force, in contrast under parallel forces the lifting capacity is smaller. Moreover, even a slight gap {between} the magnet and the plate lowers the load capacity.

Be Cautious with Neodymium Magnets

Neodymium magnets are the strongest, most remarkable magnets on earth, and the surprising force between them can surprise you at first.

Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

 It is essential to maintain neodymium magnets away from children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a major injury may occur. Magnets, depending on their size, are able even cut off a finger or alternatively there can be a significant pressure or a fracture.

Neodymium magnets can demagnetize at high temperatures.

Under specific conditions, Neodymium magnets may experience demagnetization when subjected to high temperatures.

Magnets made of neodymium are extremely fragile, resulting in their cracking.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Caution!

To raise awareness of why neodymium magnets are so dangerous, see the article titled How dangerous are very strong neodymium magnets?.

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98