SM 32x200 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130298
GTIN: 5906301812913
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
200 mm
Weight
1070 g
602.70 ZŁ with VAT / pcs + price for transport
490.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to talk magnets?
Contact us by phone
+48 22 499 98 98
alternatively drop us a message using
inquiry form
through our site.
Parameters along with form of magnetic components can be analyzed using our
modular calculator.
Same-day shipping for orders placed before 14:00.
SM 32x200 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their magnetic capacity, neodymium magnets provide the following advantages:
- They retain their magnetic properties for nearly ten years – the loss is just ~1% (based on simulations),
- They are extremely resistant to demagnetization caused by external magnetic sources,
- Thanks to the shiny finish and gold coating, they have an visually attractive appearance,
- They possess significant magnetic force measurable at the magnet’s surface,
- Thanks to their high temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
- The ability for precise shaping and adjustment to custom needs – neodymium magnets can be manufactured in many forms and dimensions, which extends the scope of their use cases,
- Wide application in cutting-edge sectors – they serve a purpose in computer drives, electric motors, healthcare devices as well as high-tech tools,
- Compactness – despite their small size, they generate strong force, making them ideal for precision applications
Disadvantages of NdFeB magnets:
- They are fragile when subjected to a powerful impact. If the magnets are exposed to shocks, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from damage while also increases its overall robustness,
- They lose magnetic force at elevated temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of synthetic coating for outdoor use,
- The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is difficult,
- Health risk from tiny pieces may arise, in case of ingestion, which is important in the family environments. It should also be noted that small elements from these magnets can hinder health screening when ingested,
- High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which may limit large-scale applications
Detachment force of the magnet in optimal conditions – what contributes to it?
The given pulling force of the magnet corresponds to the maximum force, measured under optimal conditions, namely:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a smooth surface
- in conditions of no clearance
- with vertical force applied
- in normal thermal conditions
Impact of factors on magnetic holding capacity in practice
In practice, the holding capacity of a magnet is affected by these factors, from crucial to less important:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was determined with the use of a smooth steel plate of suitable thickness (min. 20 mm), under vertically applied force, in contrast under shearing force the holding force is lower. Additionally, even a slight gap {between} the magnet and the plate decreases the lifting capacity.
Caution with Neodymium Magnets
Neodymium magnets are highly fragile, they easily fall apart as well as can become damaged.
Magnets made of neodymium are fragile and will shatter if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Never bring neodymium magnets close to a phone and GPS.
Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets can demagnetize at high temperatures.
In certain circumstances, Neodymium magnets may experience demagnetization when subjected to high temperatures.
Neodymium magnets should not be near people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can surprise you at first.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.
If joining of neodymium magnets is not controlled, at that time they may crumble and also crack. You can't move them to each other. At a distance less than 10 cm you should hold them very firmly.
Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.
Remember that neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.
Keep neodymium magnets away from the wallet, computer, and TV.
Neodymium magnets produce strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Pay attention!
So you are aware of why neodymium magnets are so dangerous, see the article titled How very dangerous are very strong neodymium magnets?.
