SM 32x200 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130298
GTIN: 5906301812913
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
200 mm
Weight
1070 g
602.70 ZŁ with VAT / pcs + price for transport
490.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Looking for a better price?
Contact us by phone
+48 888 99 98 98
if you prefer contact us using
form
through our site.
Specifications and appearance of magnetic components can be calculated with our
magnetic calculator.
Same-day processing for orders placed before 14:00.
SM 32x200 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their magnetic capacity, neodymium magnets provide the following advantages:
- They do not lose their magnetism, even after around 10 years – the loss of power is only ~1% (theoretically),
- They remain magnetized despite exposure to strong external fields,
- Because of the lustrous layer of nickel, the component looks aesthetically refined,
- They have exceptional magnetic induction on the surface of the magnet,
- These magnets tolerate elevated temperatures, often exceeding 230°C, when properly designed (in relation to profile),
- With the option for customized forming and personalized design, these magnets can be produced in numerous shapes and sizes, greatly improving application potential,
- Significant impact in modern technologies – they serve a purpose in hard drives, electric drives, diagnostic apparatus along with technologically developed systems,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, in miniature format,
Disadvantages of rare earth magnets:
- They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to shocks, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks , and at the same time reinforces its overall strength,
- They lose magnetic force at high temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a wet environment. For outdoor use, we recommend using sealed magnets, such as those made of polymer,
- Limited ability to create internal holes in the magnet – the use of a external casing is recommended,
- Safety concern due to small fragments may arise, when consumed by mistake, which is crucial in the family environments. It should also be noted that minuscule fragments from these devices have the potential to complicate medical imaging after being swallowed,
- In cases of mass production, neodymium magnet cost is a challenge,
Maximum lifting force for a neodymium magnet – what it depends on?
The given pulling force of the magnet means the maximum force, determined in a perfect environment, that is:
- with mild steel, serving as a magnetic flux conductor
- having a thickness of no less than 10 millimeters
- with a smooth surface
- with zero air gap
- with vertical force applied
- in normal thermal conditions
Key elements affecting lifting force
The lifting capacity of a magnet depends on in practice key elements, from primary to secondary:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was carried out on plates with a smooth surface of optimal thickness, under perpendicular forces, in contrast under attempts to slide the magnet the lifting capacity is smaller. Additionally, even a slight gap {between} the magnet’s surface and the plate reduces the holding force.
Handle with Care: Neodymium Magnets
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are among the strongest magnets on Earth. The astonishing force they generate between each other can shock you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Do not give neodymium magnets to youngest children.
Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.
Magnets attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a major injury may occur. Depending on how massive the neodymium magnets are, they can lead to a cut or alternatively a fracture.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Neodymium magnetic are especially fragile, resulting in shattering.
Magnets made of neodymium are delicate and will shatter if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Keep neodymium magnets away from GPS and smartphones.
Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Caution!
So you are aware of why neodymium magnets are so dangerous, read the article titled How very dangerous are powerful neodymium magnets?.
