e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our store's offer. All "magnets" on our website are available for immediate delivery (check the list). See the magnet pricing for more details check the magnet price list

Magnet for searching F300 GOLD

Where to buy powerful neodymium magnet? Magnetic holders in airtight, solid enclosure are excellent for use in difficult, demanding climate conditions, including during snow and rain see more...

magnetic holders

Magnetic holders can be used to enhance manufacturing, exploring underwater areas, or locating meteorites made of metal see...

Shipping is shipped on the same day before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x200 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130298

GTIN: 5906301812913

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

200 mm

Weight

1070 g

602.70 with VAT / pcs + price for transport

490.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
490.00 ZŁ
602.70 ZŁ
price from 10 pcs
441.00 ZŁ
542.43 ZŁ

Can't decide what to choose?

Give us a call +48 888 99 98 98 otherwise send us a note via inquiry form our website.
Weight as well as appearance of magnets can be calculated on our magnetic mass calculator.

Order by 14:00 and we’ll ship today!

SM 32x200 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 32x200 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130298
GTIN
5906301812913
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
200 mm [±0,1 mm]
Weight
1070 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device roller magnetic is based on the use of neodymium magnets, which are embedded in a casing made of stainless steel usually AISI304. Due to this, it is possible to efficiently segregate ferromagnetic particles from other materials. An important element of its operation is the use of repulsion of magnetic poles N and S, which allows magnetic substances to be targeted. The thickness of the embedded magnet and its structure's pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators are designed to extract ferromagnetic particles. If the cans are made from ferromagnetic materials, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers are employed in food production for the elimination of metallic contaminants, for example iron fragments or iron dust. Our rods are constructed from acid-resistant steel, AISI 304, suitable for contact with food.
Magnetic rollers, often called cylindrical magnets, are employed in food production, metal separation as well as recycling. They help in eliminating iron dust during the process of separating metals from other wastes.
Our magnetic rollers are composed of neodymium magnets placed in a stainless steel tube casing of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar can be with M8 threaded openings, which enables simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of forces, magnetic bars stand out in terms of magnetic force lines, flux density and the area of operation of the magnetic field. We produce them in two materials, N42 and N52.
Often it is believed that the stronger the magnet, the better. Nevertheless, the strength of the magnet's power is dependent on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and expected needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is thin, the magnetic force lines are short. Otherwise, when the magnet is thick, the force lines will be extended and reach further.
For creating the casings of magnetic separators - rollers, usually stainless steel is employed, particularly types AISI 316, AISI 316L, and AISI 304.
In a salt water contact, AISI 316 steel exhibits the best resistance due to its exceptional corrosion resistance.
Magnetic bars are characterized by their unique configuration of poles and their ability to attract magnetic particles directly onto their surface, in contrast to other devices that often use complex filtration systems.
Technical designations and terms pertaining to magnetic separators include among others magnet pitch, polarity, and magnetic induction, as well as the type of steel used.
Magnetic induction for a magnet on a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. Disadvantages may include the requirement for frequent cleaning, greater weight, and potential installation difficulties.
To properly maintain of neodymium magnetic rollers, you should they should be regularly cleaned, avoiding temperatures up to 80°C. The rollers our rollers have waterproofing IP67, so if they are leaky, the magnets inside can rust and lose their power. Testing of the rollers is recommended be carried out every two years. Care should be taken, as there is a risk getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The effective range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, which are used to remove metal contaminants from bulk and granular materials. They are used in the food industry, recycling, and plastic processing, where metal separation is crucial.

Advantages and disadvantages of neodymium magnets NdFeB.

Besides their durability, neodymium magnets are valued for these benefits:

  • They virtually do not lose power, because even after ten years, the performance loss is only ~1% (in laboratory conditions),
  • They are very resistant to demagnetization caused by external magnetic fields,
  • Because of the brilliant layer of nickel, the component looks visually appealing,
  • They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • The ability for custom shaping or adjustment to specific needs – neodymium magnets can be manufactured in many forms and dimensions, which amplifies their functionality across industries,
  • Important function in cutting-edge sectors – they are utilized in HDDs, electric motors, clinical machines along with technologically developed systems,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of magnetic elements:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to external force, we recommend in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks while also reinforces its overall durability,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a wet environment. If exposed to rain, we recommend using waterproof magnets, such as those made of plastic,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing threads directly in the magnet,
  • Potential hazard related to magnet particles may arise, if ingested accidentally, which is important in the context of child safety. It should also be noted that tiny components from these products might hinder health screening once in the system,
  • In cases of large-volume purchasing, neodymium magnet cost may not be economically viable,

Highest magnetic holding forcewhat it depends on?

The given strength of the magnet represents the optimal strength, determined in the best circumstances, that is:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a smooth surface
  • with no separation
  • under perpendicular detachment force
  • in normal thermal conditions

Lifting capacity in real conditions – factors

The lifting capacity of a magnet is influenced by in practice the following factors, ordered from most important to least significant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was conducted on a smooth plate of suitable thickness, under a perpendicular pulling force, whereas under parallel forces the lifting capacity is smaller. Moreover, even a minimal clearance {between} the magnet and the plate lowers the load capacity.

Handle Neodymium Magnets Carefully

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

 Keep neodymium magnets away from youngest children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Do not bring neodymium magnets close to GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their power can surprise you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets will crack or crumble with uncontrolled connecting to each other. Remember not to approach them to each other or have them firmly in hands at a distance less than 10 cm.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium magnets can become demagnetized at high temperatures.

Despite the general resilience of magnets, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Magnets made of neodymium are extremely delicate, they easily fall apart and can crumble.

Neodymium magnetic are fragile and will break if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Caution!

To illustrate why neodymium magnets are so dangerous, see the article - How very dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98