tel: +48 22 499 98 98

neodymium magnets

We offer blue color magnets Nd2Fe14B - our offer. Practically all "neodymium magnets" on our website are available for immediate delivery (see the list). Check out the magnet pricing for more details check the magnet price list

Magnet for fishing F300 GOLD

Where to purchase strong magnet? Magnet holders in airtight and durable steel enclosure are perfect for use in difficult weather, including during snow and rain see more...

magnetic holders

Holders with magnets can be used to improve production, underwater exploration, or searching for meteorites from gold more...

Enjoy delivery of your order on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x200 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130298

GTIN: 5906301812913

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

200 mm

Weight

1070 g

602.70 with VAT / pcs + price for transport

490.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
490.00 ZŁ
602.70 ZŁ
price from 6 pcs
465.50 ZŁ
572.56 ZŁ
price from 9 pcs
441.00 ZŁ
542.43 ZŁ

Looking for a better price?

Contact us by phone +48 888 99 98 98 if you prefer drop us a message through contact form the contact section.
Parameters along with appearance of neodymium magnets can be calculated with our power calculator.

Orders placed before 14:00 will be shipped the same business day.

SM 32x200 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 32x200 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130298
GTIN
5906301812913
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
200 mm [±0,1 mm]
Weight
1070 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
coercivity bHc ?
860-955
kA/m
coercivity bHc ?
10.8-12.0
kOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the power of neodymium magnets, which are embedded in a construction made of stainless steel mostly AISI304. In this way, it is possible to efficiently segregate ferromagnetic particles from the mixture. A fundamental component of its operation is the use of repulsion of N and S poles of neodymium magnets, which allows magnetic substances to be collected. The thickness of the magnet and its structure's pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators serve to extract ferromagnetic elements. If the cans are made of ferromagnetic materials, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers are used in food production to clear metallic contaminants, for example iron fragments or iron dust. Our rods are constructed from durable acid-resistant steel, AISI 304, suitable for contact with food.
Magnetic rollers, often called cylindrical magnets, are employed in metal separation, food production as well as waste processing. They help in eliminating iron dust during the process of separating metals from other materials.
Our magnetic rollers consist of a neodymium magnet anchored in a stainless steel tube cylinder made of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar can be with M8 threaded openings, allowing for simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of forces, magnetic bars differ in terms of magnetic force lines, flux density and the field of the magnetic field. We produce them in two materials, N42 as well as N52.
Often it is believed that the greater the magnet's power, the more effective. Nevertheless, the value of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and specific needs. The standard operating temperature of a magnetic bar is 80°C.
In the case where the magnet is thin, the magnetic force lines will be short. Otherwise, when the magnet is thick, the force lines will be longer and reach further.
For making the casings of magnetic separators - rollers, frequently stainless steel is employed, especially types AISI 316, AISI 316L, and AISI 304.
In a salt water contact, type AISI 316 steel is highly recommended due to its excellent corrosion resistance.
Magnetic rollers stand out for their unique configuration of poles and their ability to attract magnetic particles directly onto their surface, as opposed to other devices that often use more complicated filtration systems.
Technical designations and terms related to magnetic separators comprise among others polarity, magnetic induction, magnet pitch, as well as the steel type applied.
Magnetic induction for a magnet on a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations less than N27 or N25 suggest recycling that falls below the standard - they are not suitable.
Neodymium magnetic rollers offer a range of benefits such as excellent separation efficiency, strong magnetic field, and durability. On the other hand, among the drawbacks, one can mention the need for regular cleaning, higher cost, and potential installation challenges.
To properly maintain of neodymium magnetic rollers, it is recommended regularly cleaning them from deposits, avoiding extreme temperatures up to 80°C, and shielding them from moisture if the threads are not sealed – in ours, they are. The rollers feature waterproofing IP67, so if they are leaky, the magnets inside can rust and lose their power. Testing of the rollers should be carried out once every 24 months. Care should be taken, as it’s possible of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where metal separation is crucial.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their remarkable magnetic power, neodymium magnets offer the following advantages:

  • They have constant strength, and over more than ten years their performance decreases symbolically – ~1% (in testing),
  • They show strong resistance to demagnetization from outside magnetic sources,
  • Thanks to the polished finish and silver coating, they have an aesthetic appearance,
  • They have extremely strong magnetic induction on the surface of the magnet,
  • Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • The ability for precise shaping as well as adaptation to custom needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which extends the scope of their use cases,
  • Wide application in cutting-edge sectors – they are used in data storage devices, rotating machines, clinical machines or even other advanced devices,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of magnetic elements:

  • They can break when subjected to a sudden impact. If the magnets are exposed to shocks, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks and increases its overall durability,
  • They lose field intensity at extreme temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a moist environment. If exposed to rain, we recommend using moisture-resistant magnets, such as those made of rubber,
  • Limited ability to create internal holes in the magnet – the use of a mechanical support is recommended,
  • Health risk due to small fragments may arise, when consumed by mistake, which is important in the family environments. Additionally, miniature parts from these devices have the potential to complicate medical imaging once in the system,
  • High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which may limit large-scale applications

Caution with Neodymium Magnets

Neodymium magnets are the strongest magnets ever created, and their strength can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Neodymium magnets bounce and also clash mutually within a distance of several to almost 10 cm from each other.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

  Do not give neodymium magnets to children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Neodymium magnetic are extremely delicate, they easily crack as well as can become damaged.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can become demagnetized at high temperatures.

Even though magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Safety rules!

So you are aware of why neodymium magnets are so dangerous, read the article titled How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98