SM 32x200 [2xM8] / N42 - magnetic separator
magnetic separator
Catalog no 130298
GTIN: 5906301812913
Diameter Ø [±0,1 mm]
32 mm
Height [±0,1 mm]
200 mm
Weight
1070 g
602.70 ZŁ with VAT / pcs + price for transport
490.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to negotiate?
Call us now
+48 888 99 98 98
alternatively get in touch by means of
form
through our site.
Force as well as shape of magnetic components can be estimated on our
force calculator.
Orders submitted before 14:00 will be dispatched today!
SM 32x200 [2xM8] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Besides their magnetic performance, neodymium magnets are valued for these benefits:
- They retain their magnetic properties for nearly ten years – the drop is just ~1% (based on simulations),
- They show strong resistance to demagnetization from external magnetic fields,
- Thanks to the polished finish and gold coating, they have an elegant appearance,
- They possess significant magnetic force measurable at the magnet’s surface,
- Thanks to their enhanced temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
- The ability for accurate shaping or customization to specific needs – neodymium magnets can be manufactured in multiple variants of geometries, which amplifies their functionality across industries,
- Important function in new technology industries – they find application in HDDs, electric motors, medical equipment along with high-tech tools,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, with minimal size,
Disadvantages of neodymium magnets:
- They are fragile when subjected to a powerful impact. If the magnets are exposed to mechanical hits, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks , and at the same time enhances its overall resistance,
- Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- They rust in a moist environment, especially when used outside, we recommend using encapsulated magnets, such as those made of non-metallic materials,
- The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is risky,
- Potential hazard due to small fragments may arise, especially if swallowed, which is crucial in the protection of children. Additionally, miniature parts from these magnets can hinder health screening once in the system,
- Due to the price of neodymium, their cost is relatively high,
Optimal lifting capacity of a neodymium magnet – what affects it?
The given strength of the magnet represents the optimal strength, measured under optimal conditions, namely:
- using a steel plate with low carbon content, acting as a magnetic circuit closure
- with a thickness of minimum 10 mm
- with a polished side
- with no separation
- under perpendicular detachment force
- in normal thermal conditions
Determinants of lifting force in real conditions
In practice, the holding capacity of a magnet is conditioned by these factors, arranged from the most important to the least relevant:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was checked on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, however under parallel forces the lifting capacity is smaller. Additionally, even a small distance {between} the magnet’s surface and the plate reduces the lifting capacity.
Caution with Neodymium Magnets
Keep neodymium magnets as far away as possible from GPS and smartphones.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.
In the case of placing a finger in the path of a neodymium magnet, in that situation, a cut or a fracture may occur.
Neodymium magnets are highly delicate, they easily crack as well as can crumble.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Keep neodymium magnets far from youngest children.
Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Neodymium magnets are the strongest magnets ever created, and their strength can surprise you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.
Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Exercise caution!
So that know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous strong neodymium magnets.
