e-mail: bok@dhit.pl

neodymium magnets

We provide blue color magnets Nd2Fe14B - our store's offer. All magnesy in our store are in stock for immediate purchase (see the list). See the magnet price list for more details check the magnet price list

Magnets for treasure hunters F400 GOLD

Where to purchase strong magnet? Magnet holders in airtight, solid steel casing are ideally suited for use in difficult, demanding weather, including during snow and rain more...

magnetic holders

Magnetic holders can be used to facilitate production, underwater discoveries, or locating space rocks made of metal read...

Enjoy shipping of your order on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 32x200 [2xM8] / N42 - magnetic separator

magnetic separator

Catalog no 130298

GTIN: 5906301812913

0

Diameter Ø [±0,1 mm]

32 mm

Height [±0,1 mm]

200 mm

Weight

1070 g

602.70 with VAT / pcs + price for transport

490.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
490.00 ZŁ
602.70 ZŁ
price from 10 pcs
441.00 ZŁ
542.43 ZŁ

Can't decide what to choose?

Pick up the phone and ask +48 888 99 98 98 or send us a note through form the contact page.
Lifting power as well as form of magnets can be estimated with our modular calculator.

Orders placed before 14:00 will be shipped the same business day.

SM 32x200 [2xM8] / N42 - magnetic separator

Specification/characteristics SM 32x200 [2xM8] / N42 - magnetic separator
properties
values
Cat. no.
130298
GTIN
5906301812913
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
32 mm [±0,1 mm]
Height
200 mm [±0,1 mm]
Weight
1070 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The main mechanism of the magnetic separator is the use of neodymium magnets, which are embedded in a construction made of stainless steel usually AISI304. In this way, it is possible to effectively segregate ferromagnetic elements from different substances. A fundamental component of its operation is the use of repulsion of N and S poles of neodymium magnets, which allows magnetic substances to be targeted. The thickness of the magnet and its structure's pitch determine the power and range of the separator's operation.
Generally speaking, magnetic separators are used to separate ferromagnetic elements. If the cans are made of ferromagnetic materials, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers are employed in the food industry to clear metallic contaminants, for example iron fragments or iron dust. Our rods are made from durable acid-resistant steel, AISI 304, intended for contact with food.
Magnetic rollers, often called magnetic separators, are used in metal separation, food production as well as recycling. They help in removing iron dust during the process of separating metals from other materials.
Our magnetic rollers are built with a neodymium magnet embedded in a tube of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar will be with M8 threaded holes - 18 mm, allowing for quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of forces, magnetic bars differ in terms of magnetic force lines, flux density and the field of the magnetic field. We produce them in two materials, N42 as well as N52.
Usually it is believed that the greater the magnet's power, the better. However, the strength of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and expected needs. The standard operating temperature of a magnetic bar is 80°C.
In the case where the magnet is thin, the magnetic force lines will be short. Otherwise, when the magnet is thick, the force lines will be extended and extend over a greater distance.
For creating the casings of magnetic separators - rollers, frequently stainless steel is utilized, particularly types AISI 316, AISI 316L, and AISI 304.
In a salt water contact, AISI 316 steel is highly recommended due to its exceptional anti-corrosion properties.
Magnetic bars are characterized by their unique configuration of poles and their ability to attract magnetic substances directly onto their surface, as opposed to other devices that may utilize complex filtration systems.
Technical designations and terms pertaining to magnetic separators comprise among others magnet pitch, polarity, and magnetic induction, as well as the steel type applied.
Magnetic induction for a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value near the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that falls below the standard - they are not suitable.
Neodymium magnetic rollers offer many advantages, including higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. However, some of the downsides may involve higher cost compared to other types of magnets and the need for regular maintenance.
By ensuring proper maintenance of neodymium magnetic rollers, it is recommended regularly cleaning them from contaminants, avoiding extreme temperatures above 80 degrees, and protecting them from moisture if the threads are not sealed – in ours, they are. The rollers our rollers have waterproofing IP67, so if they are not sealed, the magnets inside can oxidize and weaken. Magnetic field measurements should be carried out every two years. Care should be taken, as it’s possible getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where metal separation is crucial.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their notable magnetism, neodymium magnets have these key benefits:

  • They virtually do not lose strength, because even after ten years, the performance loss is only ~1% (based on calculations),
  • They remain magnetized despite exposure to strong external fields,
  • By applying a bright layer of gold, the element gains a clean look,
  • They exhibit superior levels of magnetic induction near the outer area of the magnet,
  • Thanks to their exceptional temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
  • Thanks to the flexibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in different geometries, which increases their functional possibilities,
  • Significant impact in advanced technical fields – they are utilized in HDDs, electric motors, clinical machines or even other advanced devices,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in tiny dimensions, which allows for use in compact constructions

Disadvantages of NdFeB magnets:

  • They may fracture when subjected to a strong impact. If the magnets are exposed to physical collisions, we recommend in a metal holder. The steel housing, in the form of a holder, protects the magnet from breakage and additionally enhances its overall resistance,
  • Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is common to use sealed magnets made of rubber for outdoor use,
  • Limited ability to create internal holes in the magnet – the use of a magnetic holder is recommended,
  • Potential hazard related to magnet particles may arise, if ingested accidentally, which is crucial in the protection of children. It should also be noted that miniature parts from these magnets may complicate medical imaging if inside the body,
  • Due to the price of neodymium, their cost is considerably higher,

Maximum lifting force for a neodymium magnet – what contributes to it?

The given pulling force of the magnet corresponds to the maximum force, calculated in ideal conditions, namely:

  • with mild steel, used as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a smooth surface
  • with zero air gap
  • with vertical force applied
  • under standard ambient temperature

Lifting capacity in real conditions – factors

The lifting capacity of a magnet is influenced by in practice the following factors, ordered from most important to least significant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, whereas under parallel forces the load capacity is reduced by as much as 75%. In addition, even a slight gap {between} the magnet and the plate decreases the holding force.

Caution with Neodymium Magnets

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium magnetic are highly susceptible to damage, resulting in shattering.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

  Neodymium magnets should not be around youngest children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

If have a finger between or on the path of attracting magnets, there may be a severe cut or a fracture.

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Keep neodymium magnets away from GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their power can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

Exercise caution!

So you are aware of why neodymium magnets are so dangerous, see the article titled How very dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98