MW 25x5 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010049
GTIN/EAN: 5906301810483
Diameter Ø
25 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
18.41 g
Magnetization Direction
↑ axial
Load capacity
7.98 kg / 78.25 N
Magnetic Induction
230.20 mT / 2302 Gs
Coating
[NiCuNi] Nickel
8.39 ZŁ with VAT / pcs + price for transport
6.82 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Give us a call
+48 22 499 98 98
otherwise send us a note through
request form
the contact section.
Lifting power and appearance of a magnet can be calculated on our
power calculator.
Order by 14:00 and we’ll ship today!
Technical specification of the product - MW 25x5 / N38 - cylindrical magnet
Specification / characteristics - MW 25x5 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010049 |
| GTIN/EAN | 5906301810483 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 25 mm [±0,1 mm] |
| Height | 5 mm [±0,1 mm] |
| Weight | 18.41 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 7.98 kg / 78.25 N |
| Magnetic Induction ~ ? | 230.20 mT / 2302 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering simulation of the assembly - data
Presented data are the direct effect of a mathematical simulation. Values are based on algorithms for the material Nd2Fe14B. Actual performance may differ from theoretical values. Use these data as a reference point when designing systems.
Table 1: Static force (pull vs distance) - characteristics
MW 25x5 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
2302 Gs
230.2 mT
|
7.98 kg / 17.59 lbs
7980.0 g / 78.3 N
|
warning |
| 1 mm |
2189 Gs
218.9 mT
|
7.21 kg / 15.91 lbs
7214.9 g / 70.8 N
|
warning |
| 2 mm |
2050 Gs
205.0 mT
|
6.33 kg / 13.95 lbs
6329.3 g / 62.1 N
|
warning |
| 3 mm |
1895 Gs
189.5 mT
|
5.41 kg / 11.93 lbs
5410.7 g / 53.1 N
|
warning |
| 5 mm |
1570 Gs
157.0 mT
|
3.72 kg / 8.19 lbs
3715.4 g / 36.4 N
|
warning |
| 10 mm |
890 Gs
89.0 mT
|
1.19 kg / 2.63 lbs
1192.8 g / 11.7 N
|
low risk |
| 15 mm |
495 Gs
49.5 mT
|
0.37 kg / 0.81 lbs
368.5 g / 3.6 N
|
low risk |
| 20 mm |
288 Gs
28.8 mT
|
0.12 kg / 0.28 lbs
124.8 g / 1.2 N
|
low risk |
| 30 mm |
116 Gs
11.6 mT
|
0.02 kg / 0.04 lbs
20.2 g / 0.2 N
|
low risk |
| 50 mm |
31 Gs
3.1 mT
|
0.00 kg / 0.00 lbs
1.4 g / 0.0 N
|
low risk |
Table 2: Shear hold (wall)
MW 25x5 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.60 kg / 3.52 lbs
1596.0 g / 15.7 N
|
| 1 mm | Stal (~0.2) |
1.44 kg / 3.18 lbs
1442.0 g / 14.1 N
|
| 2 mm | Stal (~0.2) |
1.27 kg / 2.79 lbs
1266.0 g / 12.4 N
|
| 3 mm | Stal (~0.2) |
1.08 kg / 2.39 lbs
1082.0 g / 10.6 N
|
| 5 mm | Stal (~0.2) |
0.74 kg / 1.64 lbs
744.0 g / 7.3 N
|
| 10 mm | Stal (~0.2) |
0.24 kg / 0.52 lbs
238.0 g / 2.3 N
|
| 15 mm | Stal (~0.2) |
0.07 kg / 0.16 lbs
74.0 g / 0.7 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
24.0 g / 0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (sliding) - behavior on slippery surfaces
MW 25x5 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
2.39 kg / 5.28 lbs
2394.0 g / 23.5 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.60 kg / 3.52 lbs
1596.0 g / 15.7 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.80 kg / 1.76 lbs
798.0 g / 7.8 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
3.99 kg / 8.80 lbs
3990.0 g / 39.1 N
|
Table 4: Steel thickness (saturation) - sheet metal selection
MW 25x5 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.80 kg / 1.76 lbs
798.0 g / 7.8 N
|
| 1 mm |
|
2.00 kg / 4.40 lbs
1995.0 g / 19.6 N
|
| 2 mm |
|
3.99 kg / 8.80 lbs
3990.0 g / 39.1 N
|
| 3 mm |
|
5.99 kg / 13.19 lbs
5985.0 g / 58.7 N
|
| 5 mm |
|
7.98 kg / 17.59 lbs
7980.0 g / 78.3 N
|
| 10 mm |
|
7.98 kg / 17.59 lbs
7980.0 g / 78.3 N
|
| 11 mm |
|
7.98 kg / 17.59 lbs
7980.0 g / 78.3 N
|
| 12 mm |
|
7.98 kg / 17.59 lbs
7980.0 g / 78.3 N
|
Table 5: Thermal resistance (material behavior) - thermal limit
MW 25x5 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.98 kg / 17.59 lbs
7980.0 g / 78.3 N
|
OK |
| 40 °C | -2.2% |
7.80 kg / 17.21 lbs
7804.4 g / 76.6 N
|
OK |
| 60 °C | -4.4% |
7.63 kg / 16.82 lbs
7628.9 g / 74.8 N
|
|
| 80 °C | -6.6% |
7.45 kg / 16.43 lbs
7453.3 g / 73.1 N
|
|
| 100 °C | -28.8% |
5.68 kg / 12.53 lbs
5681.8 g / 55.7 N
|
Table 6: Two magnets (repulsion) - forces in the system
MW 25x5 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Strength (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
16.03 kg / 35.34 lbs
3 871 Gs
|
2.40 kg / 5.30 lbs
2405 g / 23.6 N
|
N/A |
| 1 mm |
15.31 kg / 33.75 lbs
4 498 Gs
|
2.30 kg / 5.06 lbs
2296 g / 22.5 N
|
13.78 kg / 30.38 lbs
~0 Gs
|
| 2 mm |
14.49 kg / 31.95 lbs
4 377 Gs
|
2.17 kg / 4.79 lbs
2174 g / 21.3 N
|
13.05 kg / 28.76 lbs
~0 Gs
|
| 3 mm |
13.62 kg / 30.03 lbs
4 243 Gs
|
2.04 kg / 4.50 lbs
2043 g / 20.0 N
|
12.26 kg / 27.03 lbs
~0 Gs
|
| 5 mm |
11.79 kg / 26.00 lbs
3 948 Gs
|
1.77 kg / 3.90 lbs
1769 g / 17.4 N
|
10.61 kg / 23.40 lbs
~0 Gs
|
| 10 mm |
7.46 kg / 16.46 lbs
3 141 Gs
|
1.12 kg / 2.47 lbs
1120 g / 11.0 N
|
6.72 kg / 14.81 lbs
~0 Gs
|
| 20 mm |
2.40 kg / 5.28 lbs
1 780 Gs
|
0.36 kg / 0.79 lbs
359 g / 3.5 N
|
2.16 kg / 4.75 lbs
~0 Gs
|
| 50 mm |
0.10 kg / 0.21 lbs
355 Gs
|
0.01 kg / 0.03 lbs
14 g / 0.1 N
|
0.09 kg / 0.19 lbs
~0 Gs
|
| 60 mm |
0.04 kg / 0.09 lbs
231 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.04 kg / 0.08 lbs
~0 Gs
|
| 70 mm |
0.02 kg / 0.04 lbs
158 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.02 lbs
112 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.01 lbs
82 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.01 lbs
62 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Safety (HSE) (implants) - precautionary measures
MW 25x5 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 10.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 8.0 cm |
| Timepiece | 20 Gs (2.0 mT) | 6.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 5.0 cm |
| Car key | 50 Gs (5.0 mT) | 4.5 cm |
| Payment card | 400 Gs (40.0 mT) | 2.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.5 cm |
Table 8: Impact energy (cracking risk) - warning
MW 25x5 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
22.87 km/h
(6.35 m/s)
|
0.37 J | |
| 30 mm |
36.43 km/h
(10.12 m/s)
|
0.94 J | |
| 50 mm |
46.96 km/h
(13.04 m/s)
|
1.57 J | |
| 100 mm |
66.40 km/h
(18.44 m/s)
|
3.13 J |
Table 9: Anti-corrosion coating durability
MW 25x5 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Flux)
MW 25x5 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 13 107 Mx | 131.1 µWb |
| Pc Coefficient | 0.29 | Low (Flat) |
Table 11: Underwater work (magnet fishing)
MW 25x5 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 7.98 kg | Standard |
| Water (riverbed) |
9.14 kg
(+1.16 kg buoyancy gain)
|
+14.5% |
1. Sliding resistance
*Warning: On a vertical wall, the magnet holds just a fraction of its nominal pull.
2. Steel saturation
*Thin steel (e.g. 0.5mm PC case) drastically weakens the holding force.
3. Temperature resistance
*For standard magnets, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.29
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other deals
Pros as well as cons of rare earth magnets.
Advantages
- Their power is maintained, and after around ten years it drops only by ~1% (according to research),
- Magnets effectively protect themselves against loss of magnetization caused by foreign field sources,
- The use of an shiny coating of noble metals (nickel, gold, silver) causes the element to have aesthetics,
- The surface of neodymium magnets generates a unique magnetic field – this is a key feature,
- Due to their durability and thermal resistance, neodymium magnets are capable of operate (depending on the form) even at high temperatures reaching 230°C or more...
- Thanks to the option of precise molding and customization to custom solutions, magnetic components can be created in a variety of forms and dimensions, which amplifies use scope,
- Universal use in modern industrial fields – they are used in HDD drives, electromotive mechanisms, medical equipment, as well as multitasking production systems.
- Relatively small size with high pulling force – neodymium magnets offer strong magnetic field in compact dimensions, which makes them useful in compact constructions
Weaknesses
- They are prone to damage upon too strong impacts. To avoid cracks, it is worth securing magnets using a steel holder. Such protection not only protects the magnet but also increases its resistance to damage
- When exposed to high temperature, neodymium magnets experience a drop in power. Often, when the temperature exceeds 80°C, their power decreases (depending on the size and shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- When exposed to humidity, magnets usually rust. For applications outside, it is recommended to use protective magnets, such as magnets in rubber or plastics, which prevent oxidation as well as corrosion.
- Limited ability of making nuts in the magnet and complicated forms - preferred is a housing - mounting mechanism.
- Possible danger to health – tiny shards of magnets pose a threat, in case of ingestion, which is particularly important in the context of child safety. Additionally, small elements of these products are able to disrupt the diagnostic process medical in case of swallowing.
- High unit price – neodymium magnets are more expensive than other types of magnets (e.g. ferrite), which hinders application in large quantities
Pull force analysis
Maximum lifting capacity of the magnet – what contributes to it?
- with the contact of a yoke made of special test steel, guaranteeing full magnetic saturation
- possessing a thickness of minimum 10 mm to avoid saturation
- with a surface perfectly flat
- with total lack of distance (without coatings)
- during pulling in a direction perpendicular to the mounting surface
- at conditions approx. 20°C
Practical aspects of lifting capacity – factors
- Gap (between the magnet and the metal), because even a tiny clearance (e.g. 0.5 mm) results in a drastic drop in force by up to 50% (this also applies to varnish, rust or dirt).
- Loading method – catalog parameter refers to detachment vertically. When slipping, the magnet exhibits much less (typically approx. 20-30% of nominal force).
- Element thickness – for full efficiency, the steel must be sufficiently thick. Thin sheet limits the lifting capacity (the magnet "punches through" it).
- Steel grade – the best choice is pure iron steel. Stainless steels may attract less.
- Surface condition – ground elements guarantee perfect abutment, which improves force. Uneven metal weaken the grip.
- Thermal factor – high temperature reduces pulling force. Exceeding the limit temperature can permanently demagnetize the magnet.
Holding force was tested on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, in contrast under attempts to slide the magnet the lifting capacity is smaller. In addition, even a slight gap between the magnet and the plate lowers the holding force.
Precautions when working with NdFeB magnets
Metal Allergy
Nickel alert: The Ni-Cu-Ni coating consists of nickel. If an allergic reaction happens, cease handling magnets and use protective gear.
Electronic hazard
Equipment safety: Strong magnets can damage data carriers and sensitive devices (pacemakers, medical aids, timepieces).
Eye protection
Beware of splinters. Magnets can explode upon violent connection, launching sharp fragments into the air. Eye protection is mandatory.
Keep away from electronics
Be aware: neodymium magnets produce a field that interferes with precision electronics. Maintain a safe distance from your mobile, tablet, and GPS.
Safe operation
Be careful. Rare earth magnets act from a distance and snap with massive power, often quicker than you can react.
Life threat
Warning for patients: Powerful magnets affect electronics. Keep at least 30 cm distance or request help to work with the magnets.
Crushing force
Big blocks can smash fingers instantly. Do not put your hand between two strong magnets.
Permanent damage
Watch the temperature. Heating the magnet above 80 degrees Celsius will destroy its properties and pulling force.
Product not for children
Strictly keep magnets away from children. Choking hazard is significant, and the consequences of magnets clamping inside the body are fatal.
Flammability
Mechanical processing of neodymium magnets poses a fire hazard. Magnetic powder oxidizes rapidly with oxygen and is difficult to extinguish.
