MW 25x5 / N38AH - cylindrical magnet
cylindrical magnet
Catalog no 010501
GTIN/EAN: 5906301814993
Diameter Ø
25 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
18.41 g
Magnetization Direction
↑ axial
Load capacity
7.29 kg / 71.47 N
Magnetic Induction
219.99 mT / 2200 Gs
Coating
[NiCuNi] Nickel
16.68 ZŁ with VAT / pcs + price for transport
13.56 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Contact us by phone
+48 22 499 98 98
otherwise send us a note using
inquiry form
the contact page.
Specifications and shape of a neodymium magnet can be verified on our
modular calculator.
Orders placed before 14:00 will be shipped the same business day.
Product card - MW 25x5 / N38AH - cylindrical magnet
Specification / characteristics - MW 25x5 / N38AH - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010501 |
| GTIN/EAN | 5906301814993 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 25 mm [±0,1 mm] |
| Height | 5 mm [±0,1 mm] |
| Weight | 18.41 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 7.29 kg / 71.47 N |
| Magnetic Induction ~ ? | 219.99 mT / 2200 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38AH
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.5 | kGs |
| remenance Br [min. - max.] ? | 1120-1250 | mT |
| coercivity bHc ? | ≥ 11.3 | kOe |
| coercivity bHc ? | ≥ 899 | kA/m |
| actual internal force iHc | ≥ 33 | kOe |
| actual internal force iHc | ≥ 2624 | kA/m |
| energy density [min. - max.] ? | 36-39 | BH max MGOe |
| energy density [min. - max.] ? | 287-310 | BH max KJ/m |
| max. temperature ? | ≤ 230 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical modeling of the assembly - technical parameters
These data constitute the result of a engineering calculation. Values rely on models for the class Nd2Fe14B. Real-world performance might slightly deviate from the simulation results. Please consider these calculations as a preliminary roadmap during assembly planning.
Table 1: Static pull force (pull vs gap) - interaction chart
MW 25x5 / N38AH
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
2292 Gs
229.2 mT
|
7.29 kg / 16.07 lbs
7290.0 g / 71.5 N
|
strong |
| 1 mm |
2180 Gs
218.0 mT
|
6.59 kg / 14.53 lbs
6591.0 g / 64.7 N
|
strong |
| 2 mm |
2042 Gs
204.2 mT
|
5.78 kg / 12.75 lbs
5782.0 g / 56.7 N
|
strong |
| 3 mm |
1888 Gs
188.8 mT
|
4.94 kg / 10.90 lbs
4942.8 g / 48.5 N
|
strong |
| 5 mm |
1564 Gs
156.4 mT
|
3.39 kg / 7.48 lbs
3394.1 g / 33.3 N
|
strong |
| 10 mm |
886 Gs
88.6 mT
|
1.09 kg / 2.40 lbs
1089.7 g / 10.7 N
|
weak grip |
| 15 mm |
493 Gs
49.3 mT
|
0.34 kg / 0.74 lbs
336.7 g / 3.3 N
|
weak grip |
| 20 mm |
287 Gs
28.7 mT
|
0.11 kg / 0.25 lbs
114.0 g / 1.1 N
|
weak grip |
| 30 mm |
115 Gs
11.5 mT
|
0.02 kg / 0.04 lbs
18.4 g / 0.2 N
|
weak grip |
| 50 mm |
31 Gs
3.1 mT
|
0.00 kg / 0.00 lbs
1.3 g / 0.0 N
|
weak grip |
Table 2: Slippage capacity (wall)
MW 25x5 / N38AH
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
1.46 kg / 3.21 lbs
1458.0 g / 14.3 N
|
| 1 mm | Stal (~0.2) |
1.32 kg / 2.91 lbs
1318.0 g / 12.9 N
|
| 2 mm | Stal (~0.2) |
1.16 kg / 2.55 lbs
1156.0 g / 11.3 N
|
| 3 mm | Stal (~0.2) |
0.99 kg / 2.18 lbs
988.0 g / 9.7 N
|
| 5 mm | Stal (~0.2) |
0.68 kg / 1.49 lbs
678.0 g / 6.7 N
|
| 10 mm | Stal (~0.2) |
0.22 kg / 0.48 lbs
218.0 g / 2.1 N
|
| 15 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
68.0 g / 0.7 N
|
| 20 mm | Stal (~0.2) |
0.02 kg / 0.05 lbs
22.0 g / 0.2 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Wall mounting (shearing) - behavior on slippery surfaces
MW 25x5 / N38AH
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
2.19 kg / 4.82 lbs
2187.0 g / 21.5 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
1.46 kg / 3.21 lbs
1458.0 g / 14.3 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.73 kg / 1.61 lbs
729.0 g / 7.2 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
3.65 kg / 8.04 lbs
3645.0 g / 35.8 N
|
Table 4: Material efficiency (substrate influence) - power losses
MW 25x5 / N38AH
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.73 kg / 1.61 lbs
729.0 g / 7.2 N
|
| 1 mm |
|
1.82 kg / 4.02 lbs
1822.5 g / 17.9 N
|
| 2 mm |
|
3.65 kg / 8.04 lbs
3645.0 g / 35.8 N
|
| 3 mm |
|
5.47 kg / 12.05 lbs
5467.5 g / 53.6 N
|
| 5 mm |
|
7.29 kg / 16.07 lbs
7290.0 g / 71.5 N
|
| 10 mm |
|
7.29 kg / 16.07 lbs
7290.0 g / 71.5 N
|
| 11 mm |
|
7.29 kg / 16.07 lbs
7290.0 g / 71.5 N
|
| 12 mm |
|
7.29 kg / 16.07 lbs
7290.0 g / 71.5 N
|
Table 5: Working in heat (stability) - thermal limit
MW 25x5 / N38AH
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
7.29 kg / 16.07 lbs
7290.0 g / 71.5 N
|
OK |
| 80 °C | -6.6% |
6.81 kg / 15.01 lbs
6808.9 g / 66.8 N
|
|
| 150 °C | -14.3% |
6.25 kg / 13.77 lbs
6247.5 g / 61.3 N
|
|
| 200 °C | -19.8% |
5.85 kg / 12.89 lbs
5846.6 g / 57.4 N
|
|
| 230 °C | -23.1% |
5.61 kg / 12.36 lbs
5606.0 g / 55.0 N
|
|
| 250 °C | -45.3% |
3.99 kg / 8.79 lbs
3987.6 g / 39.1 N
|
Table 6: Magnet-Magnet interaction (repulsion) - forces in the system
MW 25x5 / N38AH
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Strength (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
15.90 kg / 35.06 lbs
3 855 Gs
|
2.39 kg / 5.26 lbs
2385 g / 23.4 N
|
N/A |
| 1 mm |
15.19 kg / 33.48 lbs
4 480 Gs
|
2.28 kg / 5.02 lbs
2278 g / 22.3 N
|
13.67 kg / 30.13 lbs
~0 Gs
|
| 2 mm |
14.38 kg / 31.70 lbs
4 359 Gs
|
2.16 kg / 4.75 lbs
2157 g / 21.2 N
|
12.94 kg / 28.53 lbs
~0 Gs
|
| 3 mm |
13.51 kg / 29.79 lbs
4 226 Gs
|
2.03 kg / 4.47 lbs
2027 g / 19.9 N
|
12.16 kg / 26.81 lbs
~0 Gs
|
| 5 mm |
11.70 kg / 25.79 lbs
3 932 Gs
|
1.75 kg / 3.87 lbs
1755 g / 17.2 N
|
10.53 kg / 23.21 lbs
~0 Gs
|
| 10 mm |
7.40 kg / 16.32 lbs
3 128 Gs
|
1.11 kg / 2.45 lbs
1111 g / 10.9 N
|
6.66 kg / 14.69 lbs
~0 Gs
|
| 20 mm |
2.38 kg / 5.24 lbs
1 773 Gs
|
0.36 kg / 0.79 lbs
357 g / 3.5 N
|
2.14 kg / 4.72 lbs
~0 Gs
|
| 50 mm |
0.09 kg / 0.21 lbs
354 Gs
|
0.01 kg / 0.03 lbs
14 g / 0.1 N
|
0.09 kg / 0.19 lbs
~0 Gs
|
| 60 mm |
0.04 kg / 0.09 lbs
231 Gs
|
0.01 kg / 0.01 lbs
6 g / 0.1 N
|
0.04 kg / 0.08 lbs
~0 Gs
|
| 70 mm |
0.02 kg / 0.04 lbs
157 Gs
|
0.00 kg / 0.01 lbs
3 g / 0.0 N
|
0.02 kg / 0.04 lbs
~0 Gs
|
| 80 mm |
0.01 kg / 0.02 lbs
112 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.01 kg / 0.01 lbs
82 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.01 lbs
62 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Protective zones (electronics) - precautionary measures
MW 25x5 / N38AH
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 10.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 7.5 cm |
| Timepiece | 20 Gs (2.0 mT) | 6.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 5.0 cm |
| Remote | 50 Gs (5.0 mT) | 4.5 cm |
| Payment card | 400 Gs (40.0 mT) | 2.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.5 cm |
Table 8: Dynamics (kinetic energy) - warning
MW 25x5 / N38AH
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
21.86 km/h
(6.07 m/s)
|
0.34 J | |
| 30 mm |
34.81 km/h
(9.67 m/s)
|
0.86 J | |
| 50 mm |
44.88 km/h
(12.47 m/s)
|
1.43 J | |
| 100 mm |
63.46 km/h
(17.63 m/s)
|
2.86 J |
Table 9: Surface protection spec
MW 25x5 / N38AH
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Flux)
MW 25x5 / N38AH
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 13 054 Mx | 130.5 µWb |
| Pc Coefficient | 0.29 | Low (Flat) |
Table 11: Submerged application
MW 25x5 / N38AH
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 7.29 kg | Standard |
| Water (riverbed) |
8.35 kg
(+1.06 kg buoyancy gain)
|
+14.5% |
1. Shear force
*Note: On a vertical surface, the magnet retains only approx. 20-30% of its perpendicular strength.
2. Plate thickness effect
*Thin metal sheet (e.g. 0.5mm PC case) drastically weakens the holding force.
3. Temperature resistance
*For N38 material, the safety limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.29
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
See also offers
Pros and cons of rare earth magnets.
Pros
- Their strength remains stable, and after around ten years it drops only by ~1% (according to research),
- Magnets very well protect themselves against demagnetization caused by ambient magnetic noise,
- A magnet with a metallic silver surface has an effective appearance,
- They are known for high magnetic induction at the operating surface, which affects their effectiveness,
- Due to their durability and thermal resistance, neodymium magnets can operate (depending on the shape) even at high temperatures reaching 230°C or more...
- Thanks to the possibility of free molding and customization to custom projects, NdFeB magnets can be produced in a wide range of forms and dimensions, which makes them more universal,
- Significant place in electronics industry – they are used in hard drives, electric drive systems, precision medical tools, and multitasking production systems.
- Relatively small size with high pulling force – neodymium magnets offer strong magnetic field in small dimensions, which makes them useful in miniature devices
Limitations
- To avoid cracks upon strong impacts, we suggest using special steel housings. Such a solution protects the magnet and simultaneously increases its durability.
- Neodymium magnets demagnetize when exposed to high temperatures. After reaching 80°C, many of them experience permanent drop of strength (a factor is the shape and dimensions of the magnet). We offer magnets specially adapted to work at temperatures up to 230°C marked [AH], which are very resistant to heat
- When exposed to humidity, magnets usually rust. For applications outside, it is recommended to use protective magnets, such as magnets in rubber or plastics, which secure oxidation and corrosion.
- Due to limitations in creating threads and complicated shapes in magnets, we propose using casing - magnetic mount.
- Possible danger related to microscopic parts of magnets can be dangerous, if swallowed, which becomes key in the aspect of protecting the youngest. Additionally, small elements of these products are able to be problematic in diagnostics medical when they are in the body.
- High unit price – neodymium magnets have a higher price than other types of magnets (e.g. ferrite), which hinders application in large quantities
Lifting parameters
Detachment force of the magnet in optimal conditions – what affects it?
- using a sheet made of low-carbon steel, functioning as a circuit closing element
- whose transverse dimension is min. 10 mm
- characterized by lack of roughness
- under conditions of ideal adhesion (surface-to-surface)
- under perpendicular application of breakaway force (90-degree angle)
- in stable room temperature
Practical aspects of lifting capacity – factors
- Air gap (betwixt the magnet and the plate), because even a microscopic distance (e.g. 0.5 mm) leads to a decrease in force by up to 50% (this also applies to varnish, rust or debris).
- Force direction – note that the magnet holds strongest perpendicularly. Under shear forces, the capacity drops significantly, often to levels of 20-30% of the nominal value.
- Wall thickness – the thinner the sheet, the weaker the hold. Magnetic flux penetrates through instead of generating force.
- Material composition – not every steel attracts identically. High carbon content worsen the attraction effect.
- Surface finish – ideal contact is possible only on smooth steel. Rough texture reduce the real contact area, reducing force.
- Temperature – heating the magnet causes a temporary drop of force. It is worth remembering the thermal limit for a given model.
Lifting capacity was determined using a steel plate with a smooth surface of suitable thickness (min. 20 mm), under perpendicular pulling force, however under parallel forces the load capacity is reduced by as much as 5 times. In addition, even a slight gap between the magnet and the plate reduces the lifting capacity.
Precautions when working with NdFeB magnets
Handling rules
Exercise caution. Neodymium magnets act from a long distance and snap with massive power, often faster than you can move away.
Power loss in heat
Avoid heat. NdFeB magnets are susceptible to temperature. If you require resistance above 80°C, look for special high-temperature series (H, SH, UH).
Threat to navigation
Note: rare earth magnets generate a field that interferes with precision electronics. Maintain a separation from your mobile, tablet, and navigation systems.
No play value
These products are not intended for children. Accidental ingestion of multiple magnets may result in them connecting inside the digestive tract, which constitutes a direct threat to life and requires urgent medical intervention.
Combustion hazard
Machining of NdFeB material poses a fire hazard. Neodymium dust oxidizes rapidly with oxygen and is difficult to extinguish.
Magnet fragility
Neodymium magnets are sintered ceramics, which means they are fragile like glass. Impact of two magnets leads to them shattering into shards.
Implant safety
Medical warning: Neodymium magnets can turn off pacemakers and defibrillators. Stay away if you have medical devices.
Electronic hazard
Do not bring magnets close to a wallet, computer, or TV. The magnetism can permanently damage these devices and erase data from cards.
Crushing force
Risk of injury: The pulling power is so great that it can cause hematomas, pinching, and even bone fractures. Protective gloves are recommended.
Metal Allergy
Studies show that the nickel plating (standard magnet coating) is a strong allergen. If you have an allergy, avoid direct skin contact or opt for coated magnets.
