MW 25x5 / N38AH - cylindrical magnet
cylindrical magnet
Catalog no 010501
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
5 mm
Weight
18.41 g
Magnetization Direction
↑ axial
Load capacity
6.91 kg / 67.76 N
Magnetic Induction
219.99 mT
Coating
[NiCuNi] nickel
16.68 ZŁ with VAT / pcs + price for transport
13.56 ZŁ net + 23% VAT / pcs
5.56 ZŁ net was the lowest price in the last 30 days
bulk discounts:
Need more?Want to talk magnets?
Give us a call
+48 22 499 98 98
alternatively let us know by means of
inquiry form
the contact page.
Weight and appearance of magnetic components can be reviewed on our
modular calculator.
Orders submitted before 14:00 will be dispatched today!
MW 25x5 / N38AH - cylindrical magnet
Magnetic properties of material N38AH
Physical properties of NdFeB
Shopping tips
Moreover, even though neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a thin layer of gold-nickel to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. Therefore, any mechanical processing should be done before they are magnetized.
In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, as well as in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often covered with thin coatings, such as nickel, to preserve them from external factors and prolong their durability. Temperatures exceeding 130°C can cause a reduction of their magnetic strength, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic strength.
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their pulling strength, neodymium magnets provide the following advantages:
- They virtually do not lose strength, because even after ten years, the decline in efficiency is only ~1% (based on calculations),
- They remain magnetized despite exposure to magnetic surroundings,
- Thanks to the shiny finish and silver coating, they have an aesthetic appearance,
- They have extremely strong magnetic induction on the surface of the magnet,
- Thanks to their exceptional temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
- With the option for fine forming and personalized design, these magnets can be produced in various shapes and sizes, greatly improving design adaptation,
- Significant impact in new technology industries – they are utilized in data storage devices, electric drives, diagnostic apparatus or even sophisticated instruments,
- Relatively small size with high magnetic force – neodymium magnets offer strong power in small dimensions, which allows for use in miniature devices
Disadvantages of neodymium magnets:
- They are fragile when subjected to a sudden impact. If the magnets are exposed to external force, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and additionally strengthens its overall robustness,
- Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Magnets exposed to humidity can corrode. Therefore, for outdoor applications, we advise waterproof types made of plastic,
- The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is risky,
- Safety concern from tiny pieces may arise, especially if swallowed, which is important in the family environments. Furthermore, tiny components from these magnets might interfere with diagnostics when ingested,
- In cases of large-volume purchasing, neodymium magnet cost may not be economically viable,
Maximum holding power of the magnet – what affects it?
The given pulling force of the magnet represents the maximum force, measured in the best circumstances, namely:
- with mild steel, serving as a magnetic flux conductor
- of a thickness of at least 10 mm
- with a polished side
- with zero air gap
- under perpendicular detachment force
- at room temperature
Practical aspects of lifting capacity – factors
Practical lifting force is determined by factors, by priority:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was assessed by applying a steel plate with a smooth surface of suitable thickness (min. 20 mm), under perpendicular detachment force, whereas under shearing force the load capacity is reduced by as much as fivefold. Moreover, even a minimal clearance {between} the magnet’s surface and the plate decreases the load capacity.
Handle Neodymium Magnets Carefully
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their power can surprise you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Neodymium magnets should not be around youngest children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
The magnet is coated with nickel - be careful if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.
Magnets may crack or crumble with uncontrolled joining to each other. Remember not to approach them to each other or hold them firmly in hands at a distance less than 10 cm.
You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.
Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Neodymium magnets are extremely fragile, leading to breaking.
Neodymium magnets are extremely delicate, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.
Neodymium magnets can demagnetize at high temperatures.
Whilst Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Never bring neodymium magnets close to a phone and GPS.
Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Be careful!
Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.