MW 12x4 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010019
GTIN/EAN: 5906301810186
Diameter Ø
12 mm [±0,1 mm]
Height
4 mm [±0,1 mm]
Weight
3.39 g
Magnetization Direction
↑ axial
Load capacity
3.45 kg / 33.81 N
Magnetic Induction
343.64 mT / 3436 Gs
Coating
[NiCuNi] Nickel
1.353 ZŁ with VAT / pcs + price for transport
1.100 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Give us a call
+48 888 99 98 98
otherwise contact us through
form
the contact section.
Specifications and form of a magnet can be tested using our
magnetic mass calculator.
Orders placed before 14:00 will be shipped the same business day.
Technical - MW 12x4 / N38 - cylindrical magnet
Specification / characteristics - MW 12x4 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010019 |
| GTIN/EAN | 5906301810186 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 12 mm [±0,1 mm] |
| Height | 4 mm [±0,1 mm] |
| Weight | 3.39 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 3.45 kg / 33.81 N |
| Magnetic Induction ~ ? | 343.64 mT / 3436 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical modeling of the product - report
These values represent the result of a mathematical simulation. Values are based on models for the class Nd2Fe14B. Actual conditions may differ from theoretical values. Use these calculations as a supplementary guide during assembly planning.
Table 1: Static force (pull vs distance) - characteristics
MW 12x4 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
3435 Gs
343.5 mT
|
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
medium risk |
| 1 mm |
2950 Gs
295.0 mT
|
2.54 kg / 5.61 lbs
2544.7 g / 25.0 N
|
medium risk |
| 2 mm |
2423 Gs
242.3 mT
|
1.72 kg / 3.79 lbs
1717.5 g / 16.8 N
|
low risk |
| 3 mm |
1935 Gs
193.5 mT
|
1.09 kg / 2.41 lbs
1094.6 g / 10.7 N
|
low risk |
| 5 mm |
1190 Gs
119.0 mT
|
0.41 kg / 0.91 lbs
413.8 g / 4.1 N
|
low risk |
| 10 mm |
382 Gs
38.2 mT
|
0.04 kg / 0.09 lbs
42.7 g / 0.4 N
|
low risk |
| 15 mm |
156 Gs
15.6 mT
|
0.01 kg / 0.02 lbs
7.1 g / 0.1 N
|
low risk |
| 20 mm |
76 Gs
7.6 mT
|
0.00 kg / 0.00 lbs
1.7 g / 0.0 N
|
low risk |
| 30 mm |
26 Gs
2.6 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
low risk |
| 50 mm |
6 Gs
0.6 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
low risk |
Table 2: Sliding hold (wall)
MW 12x4 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.69 kg / 1.52 lbs
690.0 g / 6.8 N
|
| 1 mm | Stal (~0.2) |
0.51 kg / 1.12 lbs
508.0 g / 5.0 N
|
| 2 mm | Stal (~0.2) |
0.34 kg / 0.76 lbs
344.0 g / 3.4 N
|
| 3 mm | Stal (~0.2) |
0.22 kg / 0.48 lbs
218.0 g / 2.1 N
|
| 5 mm | Stal (~0.2) |
0.08 kg / 0.18 lbs
82.0 g / 0.8 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (shearing) - vertical pull
MW 12x4 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
1.04 kg / 2.28 lbs
1035.0 g / 10.2 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.69 kg / 1.52 lbs
690.0 g / 6.8 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.35 kg / 0.76 lbs
345.0 g / 3.4 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
1.73 kg / 3.80 lbs
1725.0 g / 16.9 N
|
Table 4: Steel thickness (substrate influence) - power losses
MW 12x4 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.35 kg / 0.76 lbs
345.0 g / 3.4 N
|
| 1 mm |
|
0.86 kg / 1.90 lbs
862.5 g / 8.5 N
|
| 2 mm |
|
1.73 kg / 3.80 lbs
1725.0 g / 16.9 N
|
| 3 mm |
|
2.59 kg / 5.70 lbs
2587.5 g / 25.4 N
|
| 5 mm |
|
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
| 10 mm |
|
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
| 11 mm |
|
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
| 12 mm |
|
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
Table 5: Thermal resistance (stability) - resistance threshold
MW 12x4 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
OK |
| 40 °C | -2.2% |
3.37 kg / 7.44 lbs
3374.1 g / 33.1 N
|
OK |
| 60 °C | -4.4% |
3.30 kg / 7.27 lbs
3298.2 g / 32.4 N
|
|
| 80 °C | -6.6% |
3.22 kg / 7.10 lbs
3222.3 g / 31.6 N
|
|
| 100 °C | -28.8% |
2.46 kg / 5.42 lbs
2456.4 g / 24.1 N
|
Table 6: Magnet-Magnet interaction (repulsion) - field range
MW 12x4 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Strength (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
8.23 kg / 18.13 lbs
4 952 Gs
|
1.23 kg / 2.72 lbs
1234 g / 12.1 N
|
N/A |
| 1 mm |
7.16 kg / 15.79 lbs
6 410 Gs
|
1.07 kg / 2.37 lbs
1074 g / 10.5 N
|
6.45 kg / 14.21 lbs
~0 Gs
|
| 2 mm |
6.07 kg / 13.38 lbs
5 900 Gs
|
0.91 kg / 2.01 lbs
910 g / 8.9 N
|
5.46 kg / 12.04 lbs
~0 Gs
|
| 3 mm |
5.03 kg / 11.09 lbs
5 372 Gs
|
0.75 kg / 1.66 lbs
754 g / 7.4 N
|
4.53 kg / 9.98 lbs
~0 Gs
|
| 5 mm |
3.29 kg / 7.25 lbs
4 342 Gs
|
0.49 kg / 1.09 lbs
493 g / 4.8 N
|
2.96 kg / 6.52 lbs
~0 Gs
|
| 10 mm |
0.99 kg / 2.18 lbs
2 379 Gs
|
0.15 kg / 0.33 lbs
148 g / 1.5 N
|
0.89 kg / 1.96 lbs
~0 Gs
|
| 20 mm |
0.10 kg / 0.22 lbs
764 Gs
|
0.02 kg / 0.03 lbs
15 g / 0.1 N
|
0.09 kg / 0.20 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
85 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
52 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
34 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
23 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
17 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
12 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Hazards (electronics) - precautionary measures
MW 12x4 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 5.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 4.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 3.5 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 3.0 cm |
| Car key | 50 Gs (5.0 mT) | 2.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Collisions (kinetic energy) - collision effects
MW 12x4 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
32.42 km/h
(9.01 m/s)
|
0.14 J | |
| 30 mm |
55.73 km/h
(15.48 m/s)
|
0.41 J | |
| 50 mm |
71.94 km/h
(19.98 m/s)
|
0.68 J | |
| 100 mm |
101.74 km/h
(28.26 m/s)
|
1.35 J |
Table 9: Coating parameters (durability)
MW 12x4 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Flux)
MW 12x4 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 4 114 Mx | 41.1 µWb |
| Pc Coefficient | 0.44 | Low (Flat) |
Table 11: Submerged application
MW 12x4 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 3.45 kg | Standard |
| Water (riverbed) |
3.95 kg
(+0.50 kg buoyancy gain)
|
+14.5% |
1. Vertical hold
*Warning: On a vertical wall, the magnet retains merely ~20% of its perpendicular strength.
2. Efficiency vs thickness
*Thin metal sheet (e.g. 0.5mm PC case) severely reduces the holding force.
3. Power loss vs temp
*For standard magnets, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.44
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
View more proposals
Strengths and weaknesses of neodymium magnets.
Advantages
- Their magnetic field remains stable, and after around ten years it drops only by ~1% (theoretically),
- They feature excellent resistance to weakening of magnetic properties due to opposing magnetic fields,
- The use of an metallic finish of noble metals (nickel, gold, silver) causes the element to be more visually attractive,
- Magnetic induction on the working layer of the magnet is very high,
- Neodymium magnets are characterized by extremely high magnetic induction on the magnet surface and can function (depending on the form) even at a temperature of 230°C or more...
- In view of the option of free molding and customization to custom requirements, magnetic components can be created in a wide range of geometric configurations, which amplifies use scope,
- Wide application in innovative solutions – they are utilized in computer drives, electric motors, diagnostic systems, also multitasking production systems.
- Compactness – despite small sizes they provide effective action, making them ideal for precision applications
Disadvantages
- Susceptibility to cracking is one of their disadvantages. Upon strong impact they can fracture. We recommend keeping them in a special holder, which not only protects them against impacts but also increases their durability
- We warn that neodymium magnets can lose their power at high temperatures. To prevent this, we suggest our specialized [AH] magnets, which work effectively even at 230°C.
- Magnets exposed to a humid environment can corrode. Therefore while using outdoors, we recommend using waterproof magnets made of rubber, plastic or other material protecting against moisture
- Due to limitations in realizing threads and complicated shapes in magnets, we propose using a housing - magnetic holder.
- Possible danger to health – tiny shards of magnets can be dangerous, in case of ingestion, which is particularly important in the context of child safety. Furthermore, small components of these magnets are able to complicate diagnosis medical in case of swallowing.
- High unit price – neodymium magnets are more expensive than other types of magnets (e.g. ferrite), which hinders application in large quantities
Holding force characteristics
Magnetic strength at its maximum – what contributes to it?
- on a base made of structural steel, perfectly concentrating the magnetic flux
- possessing a thickness of min. 10 mm to ensure full flux closure
- with a surface free of scratches
- with total lack of distance (without paint)
- under axial force vector (90-degree angle)
- at ambient temperature approx. 20 degrees Celsius
Key elements affecting lifting force
- Gap (betwixt the magnet and the metal), because even a tiny clearance (e.g. 0.5 mm) results in a reduction in lifting capacity by up to 50% (this also applies to varnish, corrosion or dirt).
- Pull-off angle – note that the magnet has greatest strength perpendicularly. Under shear forces, the capacity drops significantly, often to levels of 20-30% of the maximum value.
- Element thickness – to utilize 100% power, the steel must be adequately massive. Paper-thin metal restricts the lifting capacity (the magnet "punches through" it).
- Chemical composition of the base – low-carbon steel attracts best. Alloy admixtures lower magnetic permeability and holding force.
- Surface finish – ideal contact is possible only on polished steel. Any scratches and bumps create air cushions, weakening the magnet.
- Temperature influence – hot environment weakens magnetic field. Too high temperature can permanently damage the magnet.
Lifting capacity testing was conducted on plates with a smooth surface of optimal thickness, under perpendicular forces, in contrast under shearing force the holding force is lower. Moreover, even a minimal clearance between the magnet and the plate reduces the lifting capacity.
Precautions when working with neodymium magnets
Physical harm
Pinching hazard: The pulling power is so immense that it can cause blood blisters, pinching, and broken bones. Protective gloves are recommended.
Risk of cracking
NdFeB magnets are ceramic materials, which means they are prone to chipping. Collision of two magnets leads to them shattering into small pieces.
Danger to the youngest
Neodymium magnets are not intended for children. Accidental ingestion of a few magnets can lead to them attracting across intestines, which constitutes a critical condition and necessitates immediate surgery.
Keep away from computers
Avoid bringing magnets near a purse, laptop, or screen. The magnetic field can destroy these devices and wipe information from cards.
Do not underestimate power
Before starting, read the rules. Sudden snapping can destroy the magnet or hurt your hand. Think ahead.
Fire risk
Machining of neodymium magnets carries a risk of fire hazard. Neodymium dust oxidizes rapidly with oxygen and is difficult to extinguish.
Precision electronics
Navigation devices and smartphones are highly susceptible to magnetism. Close proximity with a strong magnet can permanently damage the internal compass in your phone.
Allergy Warning
Some people have a hypersensitivity to Ni, which is the common plating for NdFeB magnets. Extended handling might lead to skin redness. We suggest wear safety gloves.
Warning for heart patients
Patients with a pacemaker must keep an large gap from magnets. The magnetism can disrupt the functioning of the life-saving device.
Operating temperature
Control the heat. Heating the magnet above 80 degrees Celsius will destroy its magnetic structure and pulling force.
