MW 12x4 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010019
GTIN/EAN: 5906301810186
Diameter Ø
12 mm [±0,1 mm]
Height
4 mm [±0,1 mm]
Weight
3.39 g
Magnetization Direction
↑ axial
Load capacity
3.45 kg / 33.81 N
Magnetic Induction
343.64 mT / 3436 Gs
Coating
[NiCuNi] Nickel
1.353 ZŁ with VAT / pcs + price for transport
1.100 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Contact us by phone
+48 888 99 98 98
or drop us a message using
request form
through our site.
Force along with shape of a neodymium magnet can be tested with our
magnetic calculator.
Same-day processing for orders placed before 14:00.
Technical details - MW 12x4 / N38 - cylindrical magnet
Specification / characteristics - MW 12x4 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010019 |
| GTIN/EAN | 5906301810186 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 12 mm [±0,1 mm] |
| Height | 4 mm [±0,1 mm] |
| Weight | 3.39 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 3.45 kg / 33.81 N |
| Magnetic Induction ~ ? | 343.64 mT / 3436 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical simulation of the assembly - data
Presented values are the outcome of a mathematical analysis. Values are based on algorithms for the class Nd2Fe14B. Operational conditions may differ. Please consider these data as a preliminary roadmap when designing systems.
Table 1: Static force (pull vs distance) - power drop
MW 12x4 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
3435 Gs
343.5 mT
|
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
strong |
| 1 mm |
2950 Gs
295.0 mT
|
2.54 kg / 5.61 lbs
2544.7 g / 25.0 N
|
strong |
| 2 mm |
2423 Gs
242.3 mT
|
1.72 kg / 3.79 lbs
1717.5 g / 16.8 N
|
safe |
| 3 mm |
1935 Gs
193.5 mT
|
1.09 kg / 2.41 lbs
1094.6 g / 10.7 N
|
safe |
| 5 mm |
1190 Gs
119.0 mT
|
0.41 kg / 0.91 lbs
413.8 g / 4.1 N
|
safe |
| 10 mm |
382 Gs
38.2 mT
|
0.04 kg / 0.09 lbs
42.7 g / 0.4 N
|
safe |
| 15 mm |
156 Gs
15.6 mT
|
0.01 kg / 0.02 lbs
7.1 g / 0.1 N
|
safe |
| 20 mm |
76 Gs
7.6 mT
|
0.00 kg / 0.00 lbs
1.7 g / 0.0 N
|
safe |
| 30 mm |
26 Gs
2.6 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
safe |
| 50 mm |
6 Gs
0.6 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
safe |
Table 2: Sliding hold (vertical surface)
MW 12x4 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.69 kg / 1.52 lbs
690.0 g / 6.8 N
|
| 1 mm | Stal (~0.2) |
0.51 kg / 1.12 lbs
508.0 g / 5.0 N
|
| 2 mm | Stal (~0.2) |
0.34 kg / 0.76 lbs
344.0 g / 3.4 N
|
| 3 mm | Stal (~0.2) |
0.22 kg / 0.48 lbs
218.0 g / 2.1 N
|
| 5 mm | Stal (~0.2) |
0.08 kg / 0.18 lbs
82.0 g / 0.8 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
8.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Wall mounting (shearing) - behavior on slippery surfaces
MW 12x4 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
1.04 kg / 2.28 lbs
1035.0 g / 10.2 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.69 kg / 1.52 lbs
690.0 g / 6.8 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.35 kg / 0.76 lbs
345.0 g / 3.4 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
1.73 kg / 3.80 lbs
1725.0 g / 16.9 N
|
Table 4: Material efficiency (saturation) - sheet metal selection
MW 12x4 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.35 kg / 0.76 lbs
345.0 g / 3.4 N
|
| 1 mm |
|
0.86 kg / 1.90 lbs
862.5 g / 8.5 N
|
| 2 mm |
|
1.73 kg / 3.80 lbs
1725.0 g / 16.9 N
|
| 3 mm |
|
2.59 kg / 5.70 lbs
2587.5 g / 25.4 N
|
| 5 mm |
|
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
| 10 mm |
|
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
| 11 mm |
|
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
| 12 mm |
|
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
Table 5: Working in heat (material behavior) - power drop
MW 12x4 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
3.45 kg / 7.61 lbs
3450.0 g / 33.8 N
|
OK |
| 40 °C | -2.2% |
3.37 kg / 7.44 lbs
3374.1 g / 33.1 N
|
OK |
| 60 °C | -4.4% |
3.30 kg / 7.27 lbs
3298.2 g / 32.4 N
|
|
| 80 °C | -6.6% |
3.22 kg / 7.10 lbs
3222.3 g / 31.6 N
|
|
| 100 °C | -28.8% |
2.46 kg / 5.42 lbs
2456.4 g / 24.1 N
|
Table 6: Two magnets (attraction) - forces in the system
MW 12x4 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
8.23 kg / 18.13 lbs
4 952 Gs
|
1.23 kg / 2.72 lbs
1234 g / 12.1 N
|
N/A |
| 1 mm |
7.16 kg / 15.79 lbs
6 410 Gs
|
1.07 kg / 2.37 lbs
1074 g / 10.5 N
|
6.45 kg / 14.21 lbs
~0 Gs
|
| 2 mm |
6.07 kg / 13.38 lbs
5 900 Gs
|
0.91 kg / 2.01 lbs
910 g / 8.9 N
|
5.46 kg / 12.04 lbs
~0 Gs
|
| 3 mm |
5.03 kg / 11.09 lbs
5 372 Gs
|
0.75 kg / 1.66 lbs
754 g / 7.4 N
|
4.53 kg / 9.98 lbs
~0 Gs
|
| 5 mm |
3.29 kg / 7.25 lbs
4 342 Gs
|
0.49 kg / 1.09 lbs
493 g / 4.8 N
|
2.96 kg / 6.52 lbs
~0 Gs
|
| 10 mm |
0.99 kg / 2.18 lbs
2 379 Gs
|
0.15 kg / 0.33 lbs
148 g / 1.5 N
|
0.89 kg / 1.96 lbs
~0 Gs
|
| 20 mm |
0.10 kg / 0.22 lbs
764 Gs
|
0.02 kg / 0.03 lbs
15 g / 0.1 N
|
0.09 kg / 0.20 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
85 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
52 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
34 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
23 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
17 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
12 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Protective zones (electronics) - precautionary measures
MW 12x4 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 5.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 4.5 cm |
| Timepiece | 20 Gs (2.0 mT) | 3.5 cm |
| Mobile device | 40 Gs (4.0 mT) | 3.0 cm |
| Car key | 50 Gs (5.0 mT) | 2.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Dynamics (cracking risk) - warning
MW 12x4 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
32.42 km/h
(9.01 m/s)
|
0.14 J | |
| 30 mm |
55.73 km/h
(15.48 m/s)
|
0.41 J | |
| 50 mm |
71.94 km/h
(19.98 m/s)
|
0.68 J | |
| 100 mm |
101.74 km/h
(28.26 m/s)
|
1.35 J |
Table 9: Anti-corrosion coating durability
MW 12x4 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Flux)
MW 12x4 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 4 114 Mx | 41.1 µWb |
| Pc Coefficient | 0.44 | Low (Flat) |
Table 11: Physics of underwater searching
MW 12x4 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 3.45 kg | Standard |
| Water (riverbed) |
3.95 kg
(+0.50 kg buoyancy gain)
|
+14.5% |
1. Vertical hold
*Caution: On a vertical surface, the magnet retains only a fraction of its perpendicular strength.
2. Steel saturation
*Thin metal sheet (e.g. 0.5mm PC case) severely weakens the holding force.
3. Power loss vs temp
*For N38 material, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.44
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Check out also products
Advantages as well as disadvantages of Nd2Fe14B magnets.
Pros
- They retain attractive force for nearly 10 years – the loss is just ~1% (according to analyses),
- Magnets perfectly resist against demagnetization caused by external fields,
- In other words, due to the shiny surface of silver, the element looks attractive,
- Magnetic induction on the top side of the magnet turns out to be very high,
- Thanks to resistance to high temperature, they are capable of working (depending on the shape) even at temperatures up to 230°C and higher...
- Thanks to modularity in shaping and the capacity to modify to specific needs,
- Versatile presence in modern industrial fields – they are utilized in hard drives, electric drive systems, precision medical tools, also other advanced devices.
- Thanks to concentrated force, small magnets offer high operating force, occupying minimum space,
Cons
- To avoid cracks upon strong impacts, we recommend using special steel housings. Such a solution protects the magnet and simultaneously increases its durability.
- We warn that neodymium magnets can reduce their strength at high temperatures. To prevent this, we recommend our specialized [AH] magnets, which work effectively even at 230°C.
- They oxidize in a humid environment - during use outdoors we recommend using waterproof magnets e.g. in rubber, plastic
- Due to limitations in producing threads and complicated forms in magnets, we recommend using cover - magnetic holder.
- Potential hazard to health – tiny shards of magnets are risky, in case of ingestion, which is particularly important in the context of child health protection. Furthermore, small elements of these devices can complicate diagnosis medical in case of swallowing.
- With budget limitations the cost of neodymium magnets is a challenge,
Holding force characteristics
Maximum lifting capacity of the magnet – what contributes to it?
- with the application of a yoke made of special test steel, ensuring full magnetic saturation
- whose transverse dimension reaches at least 10 mm
- with an polished touching surface
- with direct contact (no paint)
- during detachment in a direction perpendicular to the mounting surface
- at standard ambient temperature
Key elements affecting lifting force
- Distance (between the magnet and the plate), since even a microscopic distance (e.g. 0.5 mm) can cause a decrease in lifting capacity by up to 50% (this also applies to paint, corrosion or debris).
- Force direction – remember that the magnet holds strongest perpendicularly. Under sliding down, the holding force drops significantly, often to levels of 20-30% of the maximum value.
- Substrate thickness – to utilize 100% power, the steel must be adequately massive. Paper-thin metal restricts the lifting capacity (the magnet "punches through" it).
- Material type – ideal substrate is pure iron steel. Hardened steels may attract less.
- Surface quality – the smoother and more polished the plate, the better the adhesion and higher the lifting capacity. Roughness acts like micro-gaps.
- Operating temperature – neodymium magnets have a sensitivity to temperature. When it is hot they are weaker, and in frost gain strength (up to a certain limit).
Holding force was measured on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, in contrast under parallel forces the holding force is lower. Additionally, even a minimal clearance between the magnet and the plate lowers the holding force.
Safe handling of NdFeB magnets
Crushing force
Danger of trauma: The pulling power is so immense that it can result in hematomas, crushing, and broken bones. Protective gloves are recommended.
Adults only
NdFeB magnets are not suitable for play. Accidental ingestion of several magnets may result in them pinching intestinal walls, which poses a critical condition and necessitates immediate surgery.
Fire risk
Powder produced during machining of magnets is self-igniting. Avoid drilling into magnets without proper cooling and knowledge.
Phone sensors
Remember: neodymium magnets produce a field that interferes with precision electronics. Maintain a safe distance from your phone, device, and navigation systems.
Shattering risk
Beware of splinters. Magnets can fracture upon violent connection, ejecting sharp fragments into the air. Eye protection is mandatory.
Health Danger
For implant holders: Powerful magnets affect medical devices. Maintain at least 30 cm distance or request help to handle the magnets.
Avoid contact if allergic
Studies show that nickel (the usual finish) is a strong allergen. For allergy sufferers, refrain from direct skin contact and choose encased magnets.
Do not overheat magnets
Do not overheat. Neodymium magnets are sensitive to temperature. If you require resistance above 80°C, ask us about HT versions (H, SH, UH).
Keep away from computers
Do not bring magnets near a wallet, computer, or TV. The magnetism can destroy these devices and erase data from cards.
Handling rules
Handle with care. Rare earth magnets act from a long distance and snap with massive power, often faster than you can move away.
