MW 12x4 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010019
GTIN: 5906301810186
Diameter Ø [±0,1 mm]
12 mm
Height [±0,1 mm]
4 mm
Weight
3.39 g
Magnetization Direction
↑ axial
Load capacity
2.65 kg / 25.99 N
Magnetic Induction
343.64 mT
Coating
[NiCuNi] nickel
1.353 ZŁ with VAT / pcs + price for transport
1.100 ZŁ net + 23% VAT / pcs
1.070 ZŁ net was the lowest price in the last 30 days
bulk discounts:
Need more?Need help making a decision?
Call us
+48 888 99 98 98
otherwise get in touch via
request form
the contact form page.
Parameters along with appearance of magnetic components can be verified on our
online calculation tool.
Order by 14:00 and we’ll ship today!
MW 12x4 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, although neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a thin layer of gold-nickel to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.
In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often covered with thin coatings, such as gold, to protect them from environmental factors and prolong their durability. Temperatures exceeding 130°C can result in a reduction of their magnetic strength, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic properties.
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their magnetic capacity, neodymium magnets provide the following advantages:
- They virtually do not lose power, because even after 10 years, the performance loss is only ~1% (according to literature),
- They are highly resistant to demagnetization caused by external magnetic fields,
- Because of the lustrous layer of silver, the component looks aesthetically refined,
- Magnetic induction on the surface of these magnets is impressively powerful,
- These magnets tolerate high temperatures, often exceeding 230°C, when properly designed (in relation to build),
- Thanks to the possibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in different geometries, which increases their functional possibilities,
- Wide application in cutting-edge sectors – they are used in hard drives, electric motors, diagnostic apparatus as well as technologically developed systems,
- Thanks to their power density, small magnets offer high magnetic performance, with minimal size,
Disadvantages of neodymium magnets:
- They may fracture when subjected to a heavy impact. If the magnets are exposed to external force, we recommend in a metal holder. The steel housing, in the form of a holder, protects the magnet from damage and additionally increases its overall strength,
- They lose magnetic force at extreme temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of plastic for outdoor use,
- Limited ability to create threads in the magnet – the use of a external casing is recommended,
- Possible threat linked to microscopic shards may arise, in case of ingestion, which is notable in the protection of children. It should also be noted that miniature parts from these magnets can disrupt scanning once in the system,
- Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications
Highest magnetic holding force – what contributes to it?
The given lifting capacity of the magnet corresponds to the maximum lifting force, measured in the best circumstances, specifically:
- with mild steel, used as a magnetic flux conductor
- of a thickness of at least 10 mm
- with a smooth surface
- with no separation
- with vertical force applied
- at room temperature
Determinants of practical lifting force of a magnet
The lifting capacity of a magnet is determined by in practice key elements, ordered from most important to least significant:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was assessed using a smooth steel plate of suitable thickness (min. 20 mm), under vertically applied force, in contrast under parallel forces the load capacity is reduced by as much as 75%. Additionally, even a minimal clearance {between} the magnet and the plate decreases the load capacity.
Handle Neodymium Magnets with Caution
Magnets are not toys, children should not play with them.
Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
In the situation of holding a finger in the path of a neodymium magnet, in that situation, a cut or even a fracture may occur.
Do not bring neodymium magnets close to GPS and smartphones.
Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are extremely fragile, resulting in breaking.
Neodymium magnetic are extremely fragile, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.
Neodymium magnets can become demagnetized at high temperatures.
Under specific conditions, Neodymium magnets can lose their magnetism when subjected to high temperatures.
Neodymium magnets are the strongest magnets ever created, and their strength can surprise you.
To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Keep neodymium magnets away from the wallet, computer, and TV.
Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Safety rules!
So that know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous very strong neodymium magnets.
