UMGGW 22x6 [M4] GW / N38 - magnetic holder rubber internal thread
magnetic holder rubber internal thread
Catalog no 160304
GTIN: 5906301813620
Diameter Ø [±0,1 mm]
22 mm
Height [±0,1 mm]
6 mm
Weight
12 g
Load capacity
5.1 kg / 50.01 N
7.38 ZŁ with VAT / pcs + price for transport
6.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Do you have a dilemma?
Pick up the phone and ask
+48 22 499 98 98
otherwise send us a note through
our online form
the contact section.
Lifting power and structure of a neodymium magnet can be reviewed with our
our magnetic calculator.
Same-day shipping for orders placed before 14:00.
UMGGW 22x6 [M4] GW / N38 - magnetic holder rubber internal thread
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their superior power, neodymium magnets have these key benefits:
- They do not lose their power around ten years – the reduction of power is only ~1% (theoretically),
- They show exceptional resistance to demagnetization from external magnetic fields,
- Thanks to the shiny finish and silver coating, they have an elegant appearance,
- They possess strong magnetic force measurable at the magnet’s surface,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- Thanks to the freedom in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in different geometries, which expands their application range,
- Important function in advanced technical fields – they serve a purpose in HDDs, rotating machines, medical equipment or even high-tech tools,
- Thanks to their efficiency per volume, small magnets offer high magnetic performance, with minimal size,
Disadvantages of NdFeB magnets:
- They can break when subjected to a heavy impact. If the magnets are exposed to physical collisions, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage and additionally enhances its overall strength,
- Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Magnets exposed to moisture can oxidize. Therefore, for outdoor applications, we suggest waterproof types made of plastic,
- Limited ability to create threads in the magnet – the use of a housing is recommended,
- Possible threat from tiny pieces may arise, especially if swallowed, which is crucial in the context of child safety. It should also be noted that tiny components from these assemblies have the potential to interfere with diagnostics when ingested,
- High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which may limit large-scale applications
Highest magnetic holding force – what contributes to it?
The given pulling force of the magnet represents the maximum force, calculated in ideal conditions, specifically:
- with mild steel, serving as a magnetic flux conductor
- with a thickness of minimum 10 mm
- with a smooth surface
- with zero air gap
- in a perpendicular direction of force
- in normal thermal conditions
What influences lifting capacity in practice
In practice, the holding capacity of a magnet is conditioned by these factors, in descending order of importance:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was checked on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, whereas under shearing force the load capacity is reduced by as much as fivefold. Moreover, even a minimal clearance {between} the magnet’s surface and the plate decreases the holding force.
Handle Neodymium Magnets with Caution
Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can surprise you.
Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent disruption to the magnets.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
Magnets attract each other within a distance of several to around 10 cm from each other. Remember not to put fingers between magnets or in their path when they attract. Depending on how large the neodymium magnets are, they can lead to a cut or alternatively a fracture.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
Neodymium magnets generate intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are extremely fragile, leading to shattering.
Neodymium magnets are extremely delicate, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Neodymium magnets should not be in the vicinity children.
Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Never bring neodymium magnets close to a phone and GPS.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Safety precautions!
To illustrate why neodymium magnets are so dangerous, see the article - How dangerous are very strong neodymium magnets?.