SM 18x100 [2xM5] / N42 - magnetic separator
magnetic separator
Catalog no 130269
GTIN: 5906301812715
Diameter Ø [±0,1 mm]
18 mm
Height [±0,1 mm]
100 mm
Weight
0.01 g
221.40 ZŁ with VAT / pcs + price for transport
180.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Looking for a better price?
Call us now
+48 888 99 98 98
otherwise get in touch by means of
inquiry form
the contact page.
Specifications and structure of a magnet can be reviewed on our
power calculator.
Orders submitted before 14:00 will be dispatched today!
SM 18x100 [2xM5] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their magnetic efficiency, neodymium magnets provide the following advantages:
- They retain their magnetic properties for nearly ten years – the drop is just ~1% (according to analyses),
- Their ability to resist magnetic interference from external fields is among the best,
- In other words, due to the metallic nickel coating, the magnet obtains an stylish appearance,
- Magnetic induction on the surface of these magnets is very strong,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- With the option for fine forming and precise design, these magnets can be produced in numerous shapes and sizes, greatly improving engineering flexibility,
- Significant impact in new technology industries – they are used in data storage devices, rotating machines, clinical machines along with other advanced devices,
- Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in compact dimensions, which makes them useful in miniature devices
Disadvantages of rare earth magnets:
- They can break when subjected to a powerful impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage and reinforces its overall durability,
- They lose strength at elevated temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Magnets exposed to moisture can rust. Therefore, for outdoor applications, it's best to use waterproof types made of coated materials,
- The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is risky,
- Potential hazard linked to microscopic shards may arise, in case of ingestion, which is significant in the health of young users. It should also be noted that small elements from these products might interfere with diagnostics when ingested,
- In cases of large-volume purchasing, neodymium magnet cost may not be economically viable,
Maximum magnetic pulling force – what contributes to it?
The given strength of the magnet represents the optimal strength, measured in ideal conditions, namely:
- with the use of low-carbon steel plate serving as a magnetic yoke
- of a thickness of at least 10 mm
- with a polished side
- with zero air gap
- under perpendicular detachment force
- under standard ambient temperature
Determinants of lifting force in real conditions
Practical lifting force is determined by elements, by priority:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was determined with the use of a smooth steel plate of suitable thickness (min. 20 mm), under vertically applied force, whereas under parallel forces the lifting capacity is smaller. Additionally, even a small distance {between} the magnet’s surface and the plate decreases the lifting capacity.
Safety Precautions
Keep neodymium magnets away from TV, wallet, and computer HDD.
Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are not recommended for people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets can become demagnetized at high temperatures.
While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
It is important to keep neodymium magnets out of reach from youngest children.
Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.
Neodymium magnets are the strongest, most remarkable magnets on the planet, and the surprising force between them can surprise you at first.
Familiarize yourself with our information to properly handle these magnets and avoid significant swellings to your body and prevent disruption to the magnets.
Neodymium magnetic are fragile as well as can easily break as well as get damaged.
Neodymium magnetic are extremely delicate, and by joining them in an uncontrolled manner, they will crack. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
In the case of holding a finger in the path of a neodymium magnet, in such a case, a cut or even a fracture may occur.
Caution!
To raise awareness of why neodymium magnets are so dangerous, read the article titled How very dangerous are very strong neodymium magnets?.
