e-mail: bok@dhit.pl

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our offer. Practically all "magnets" on our website are in stock for immediate delivery (see the list). Check out the magnet pricing for more details check the magnet price list

Magnet for searching F200 GOLD

Where to purchase powerful magnet? Magnetic holders in solid and airtight steel casing are ideally suited for use in difficult weather conditions, including during snow and rain see more...

magnets with holders

Magnetic holders can be applied to facilitate production, exploring underwater areas, or finding meteorites from gold see more...

We promise to ship ordered magnets on the same day by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available Ships tomorrow

SM 18x100 [2xM5] / N42 - magnetic separator

magnetic separator

Catalog no 130269

GTIN: 5906301812715

5

Diameter Ø [±0,1 mm]

18 mm

Height [±0,1 mm]

100 mm

Weight

0.01 g

221.40 with VAT / pcs + price for transport

180.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
180.00 ZŁ
221.40 ZŁ
price from 15 pcs
171.00 ZŁ
210.33 ZŁ
price from 25 pcs
162.00 ZŁ
199.26 ZŁ

Looking for a better price?

Call us now +48 888 99 98 98 otherwise get in touch by means of inquiry form the contact page.
Specifications and structure of a magnet can be reviewed on our power calculator.

Orders submitted before 14:00 will be dispatched today!

SM 18x100 [2xM5] / N42 - magnetic separator

Specification/characteristics SM 18x100 [2xM5] / N42 - magnetic separator
properties
values
Cat. no.
130269
GTIN
5906301812715
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
18 mm [±0,1 mm]
Height
100 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic rod is the basic building block of grate separators. Its task is to separate metal filings from the transported material. Thanks to the use of strong neodymium magnets, the rod catches even fine metal dust.
The outer layer is polished acid-resistant steel, approved for food contact. The center is filled with NdFeB magnets arranged to maximize the field on the surface. Such construction ensures resistance to corrosion, water, and acids.
Due to high power, direct removal of filings can be troublesome. We recommend taping the filings and peeling them off together. For easier maintenance, consider a system with a cleaning sleeve.
The Gauss value tells us how effectively the magnet will catch small impurities. Standard rods (~8000 Gs) are sufficient for bolts, nails, and chips. High Power versions (~12000-14000 Gs) are necessary to catch metal dust and stainless steel after processing.
Yes, as a manufacturer, we make rods of any length and diameter (standard is 25mm and 32mm). The rod end is adapted to the mounting system in your separator. We ensure fast execution of special orders.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their magnetic efficiency, neodymium magnets provide the following advantages:

  • They retain their magnetic properties for nearly ten years – the drop is just ~1% (according to analyses),
  • Their ability to resist magnetic interference from external fields is among the best,
  • In other words, due to the metallic nickel coating, the magnet obtains an stylish appearance,
  • Magnetic induction on the surface of these magnets is very strong,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • With the option for fine forming and precise design, these magnets can be produced in numerous shapes and sizes, greatly improving engineering flexibility,
  • Significant impact in new technology industries – they are used in data storage devices, rotating machines, clinical machines along with other advanced devices,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in compact dimensions, which makes them useful in miniature devices

Disadvantages of rare earth magnets:

  • They can break when subjected to a powerful impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage and reinforces its overall durability,
  • They lose strength at elevated temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to moisture can rust. Therefore, for outdoor applications, it's best to use waterproof types made of coated materials,
  • The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is risky,
  • Potential hazard linked to microscopic shards may arise, in case of ingestion, which is significant in the health of young users. It should also be noted that small elements from these products might interfere with diagnostics when ingested,
  • In cases of large-volume purchasing, neodymium magnet cost may not be economically viable,

Maximum magnetic pulling forcewhat contributes to it?

The given strength of the magnet represents the optimal strength, measured in ideal conditions, namely:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a polished side
  • with zero air gap
  • under perpendicular detachment force
  • under standard ambient temperature

Determinants of lifting force in real conditions

Practical lifting force is determined by elements, by priority:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined with the use of a smooth steel plate of suitable thickness (min. 20 mm), under vertically applied force, whereas under parallel forces the lifting capacity is smaller. Additionally, even a small distance {between} the magnet’s surface and the plate decreases the lifting capacity.

Safety Precautions

Keep neodymium magnets away from TV, wallet, and computer HDD.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are not recommended for people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets can become demagnetized at high temperatures.

While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

 It is important to keep neodymium magnets out of reach from youngest children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Neodymium magnets are the strongest, most remarkable magnets on the planet, and the surprising force between them can surprise you at first.

Familiarize yourself with our information to properly handle these magnets and avoid significant swellings to your body and prevent disruption to the magnets.

Neodymium magnetic are fragile as well as can easily break as well as get damaged.

Neodymium magnetic are extremely delicate, and by joining them in an uncontrolled manner, they will crack. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, small metal fragments can be dispersed in different directions.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

In the case of holding a finger in the path of a neodymium magnet, in such a case, a cut or even a fracture may occur.

Caution!

To raise awareness of why neodymium magnets are so dangerous, read the article titled How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98