tel: +48 22 499 98 98

neodymium magnets

We offer blue color magnets Nd2Fe14B - our store's offer. Practically all magnesy on our website are in stock for immediate delivery (see the list). See the magnet pricing for more details check the magnet price list

Magnet for treasure hunters F300 GOLD

Where to buy powerful magnet? Magnet holders in airtight, solid steel enclosure are ideally suited for use in difficult, demanding weather, including snow and rain more...

magnetic holders

Magnetic holders can be applied to facilitate production processes, underwater discoveries, or finding space rocks from gold more information...

We promise to ship ordered magnets on the day of purchase by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 18x100 [2xM5] / N42 - magnetic separator

magnetic separator

Catalog no 130269

GTIN: 5906301812715

5

Diameter Ø [±0,1 mm]

18 mm

Height [±0,1 mm]

100 mm

Weight

0.01 g

221.40 with VAT / pcs + price for transport

180.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
180.00 ZŁ
221.40 ZŁ
price from 15 pcs
171.00 ZŁ
210.33 ZŁ
price from 25 pcs
162.00 ZŁ
199.26 ZŁ

Need help making a decision?

Give us a call +48 22 499 98 98 or get in touch by means of form the contact section.
Strength and structure of neodymium magnets can be estimated using our modular calculator.

Same-day shipping for orders placed before 14:00.

SM 18x100 [2xM5] / N42 - magnetic separator

Specification/characteristics SM 18x100 [2xM5] / N42 - magnetic separator
properties
values
Cat. no.
130269
GTIN
5906301812715
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
18 mm [±0,1 mm]
Height
100 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the force of neodymium magnets, which are placed in a construction made of stainless steel mostly AISI304. In this way, it is possible to effectively remove ferromagnetic particles from other materials. A fundamental component of its operation is the use of repulsion of magnetic poles N and S, which enables magnetic substances to be collected. The thickness of the embedded magnet and its structure's pitch affect the power and range of the separator's operation.
Generally speaking, magnetic separators are used to separate ferromagnetic elements. If the cans are made of ferromagnetic materials, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers are employed in the food sector to remove metallic contaminants, for example iron fragments or iron dust. Our rods are made from durable acid-resistant steel, EN 1.4301, intended for use in food.
Magnetic rollers, often called magnetic separators, are employed in metal separation, food production as well as waste processing. They help in extracting iron dust in the course of the process of separating metals from other wastes.
Our magnetic rollers consist of neodymium magnets anchored in a stainless steel tube cylinder of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar will be with M8 threaded holes - 18 mm, allowing for easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars differ in terms of flux density, magnetic force lines and the field of the magnetic field. We produce them in two materials, N42 and N52.
Usually it is believed that the stronger the magnet, the more efficient it is. But, the effectiveness of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and expected needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is thin, the magnetic force lines are more compressed. On the other hand, in the case of a thicker magnet, the force lines are extended and extend over a greater distance.
For making the casings of magnetic separators - rollers, frequently stainless steel is employed, especially types AISI 316, AISI 316L, and AISI 304.
In a saltwater contact, type AISI 316 steel is recommended due to its excellent corrosion resistance.
Magnetic bars stand out for their unique configuration of poles and their capability to attract magnetic substances directly onto their surface, in contrast to other devices that may utilize more complicated filtration systems.
Technical designations and terms related to magnetic separators include amongst others magnet pitch, polarity, and magnetic induction, as well as the steel type applied.
Magnetic induction for a magnet on a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value near the magnetic pole. The outcome is verified in a value table - the lowest is N30. All designations less than N27 or N25 indicate recycling that falls below the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. On the other hand, among the drawbacks, one can mention higher cost compared to other types of magnets and the need for regular maintenance.
By ensuring proper maintenance of neodymium magnetic rollers, you should regularly cleaning them from contaminants, avoiding extreme temperatures above 80 degrees, and protecting them from moisture if the threads are not sealed – in ours, they are. The rollers our rollers have waterproofing IP67, so if they are leaky, the magnets inside can oxidize and weaken. Magnetic field measurements is recommended be carried out once every 24 months. Care should be taken, as it’s possible getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The effective range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where metal separation is crucial.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their remarkable pulling force, neodymium magnets offer the following advantages:

  • They have constant strength, and over nearly ten years their performance decreases symbolically – ~1% (according to theory),
  • They protect against demagnetization induced by external magnetic influence very well,
  • The use of a decorative nickel surface provides a refined finish,
  • They have extremely strong magnetic induction on the surface of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • Thanks to the flexibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in various configurations, which expands their functional possibilities,
  • Important function in cutting-edge sectors – they find application in HDDs, rotating machines, clinical machines and technologically developed systems,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in compact dimensions, which allows for use in miniature devices

Disadvantages of magnetic elements:

  • They may fracture when subjected to a heavy impact. If the magnets are exposed to shocks, we recommend in a metal holder. The steel housing, in the form of a holder, protects the magnet from fracture and additionally increases its overall strength,
  • They lose power at extreme temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a damp environment – during outdoor use, we recommend using encapsulated magnets, such as those made of polymer,
  • Limited ability to create precision features in the magnet – the use of a mechanical support is recommended,
  • Safety concern linked to microscopic shards may arise, especially if swallowed, which is important in the health of young users. It should also be noted that tiny components from these magnets might hinder health screening when ingested,
  • In cases of large-volume purchasing, neodymium magnet cost is a challenge,

Detachment force of the magnet in optimal conditionswhat affects it?

The given holding capacity of the magnet represents the highest holding force, measured in the best circumstances, namely:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • with a thickness of minimum 10 mm
  • with a polished side
  • in conditions of no clearance
  • with vertical force applied
  • at room temperature

Lifting capacity in practice – influencing factors

Practical lifting force is determined by factors, by priority:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined with the use of a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular pulling force, whereas under attempts to slide the magnet the lifting capacity is smaller. In addition, even a small distance {between} the magnet and the plate reduces the lifting capacity.

Handle with Care: Neodymium Magnets

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can surprise you.

To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Neodymium magnets produce strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

If have a finger between or on the path of attracting magnets, there may be a serious cut or even a fracture.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

People with pacemakers are advised to avoid neodymium magnets.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnets are noted for their fragility, which can cause them to crumble.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

  Do not give neodymium magnets to children.

Neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Safety precautions!

So that know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous very powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98