tel: +48 888 99 98 98

neodymium magnets

We provide red color magnets Nd2Fe14B - our proposal. Practically all "neodymium magnets" in our store are in stock for immediate purchase (check the list). See the magnet pricing for more details see the magnet price list

Magnets for treasure hunters F300 GOLD

Where to purchase very strong magnet? Magnetic holders in airtight and durable enclosure are excellent for use in difficult, demanding weather conditions, including snow and rain see more...

magnets with holders

Magnetic holders can be applied to facilitate production processes, underwater exploration, or finding meteorites made of ore more...

We promise to ship ordered magnets on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 18x100 [2xM5] / N42 - magnetic separator

magnetic separator

Catalog no 130269

GTIN: 5906301812715

5

Diameter Ø [±0,1 mm]

18 mm

Height [±0,1 mm]

100 mm

Weight

0.01 g

221.40 with VAT / pcs + price for transport

180.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
180.00 ZŁ
221.40 ZŁ
price from 13 pcs
171.00 ZŁ
210.33 ZŁ
price from 25 pcs
162.00 ZŁ
199.26 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

SM 18x100 [2xM5] / N42 - magnetic separator

Specification/characteristics SM 18x100 [2xM5] / N42 - magnetic separator
properties
values
Cat. no.
130269
GTIN
5906301812715
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
18 mm [±0,1 mm]
Height
100 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
coercivity bHc ?
860-955
kA/m
coercivity bHc ?
10.8-12.0
kOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The main mechanism of the magnetic separator is the use of neodymium magnets, placed in a construction made of stainless steel mostly AISI304. As a result, it is possible to efficiently segregate ferromagnetic particles from other materials. An important element of its operation is the repulsion of N and S poles of neodymium magnets, which enables magnetic substances to be targeted. The thickness of the embedded magnet and its structure pitch affect the range and strength of the separator's operation.
Generally speaking, magnetic separators serve to segregate ferromagnetic elements. If the cans are made of ferromagnetic materials, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers are employed in the food industry to clear metallic contaminants, for example iron fragments or iron dust. Our rollers are constructed from durable acid-resistant steel, EN 1.4301, intended for contact with food.
Magnetic rollers, otherwise magnetic separators, are employed in metal separation, food production as well as recycling. They help in removing iron dust during the process of separating metals from other materials.
Our magnetic rollers consist of a neodymium magnet anchored in a stainless steel tube cylinder made of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar will be with M8 threaded openings, allowing for simple mounting in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of magnetic properties, magnetic bars stand out in terms of magnetic force lines, flux density and the area of operation of the magnetic field. We produce them in two materials, N42 as well as N52.
Often it is believed that the greater the magnet's power, the more efficient it is. However, the effectiveness of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and expected needs. The standard operating temperature of a magnetic bar is 80°C.
In the case where the magnet is more flat, the magnetic force lines will be more compressed. Otherwise, when the magnet is thick, the force lines will be longer and reach further.
For constructing the casings of magnetic separators - rollers, usually stainless steel is used, especially types AISI 304, AISI 316, and AISI 316L.
In a saltwater contact, AISI 316 steel exhibits the best resistance due to its excellent corrosion resistance.
Magnetic rollers are characterized by their unique configuration of poles and their ability to attract magnetic substances directly onto their surface, as opposed to other devices that may utilize more complicated filtration systems.
Technical designations and terms related to magnetic separators comprise among others polarity, magnetic induction, magnet pitch, as well as the type of steel used.
Magnetic induction for a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value close to the magnetic pole. The result is verified in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that falls below the standard - they are not suitable.
Neodymium magnetic rollers offer many advantages, including higher attracting power, longer lifespan, and effectiveness in separating fine metal particles. However, some of the downsides may involve the requirement for frequent cleaning, greater weight, and potential installation difficulties.
For proper maintenance of neodymium magnetic rollers, it is recommended cleaning regularly, avoiding temperatures above 80 degrees. The rollers our rollers have waterproofing IP67, so if they are not sealed, the magnets inside can oxidize and lose their power. Testing of the rollers is recommended be carried out once every 24 months. Care should be taken, as there is a risk getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where the removal of iron metals and iron filings is essential.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to immense strength, neodymium magnets have the following advantages:

  • They do not lose their power (of the magnet). After approximately 10 years, their strength decreases by only ~1% (theoretically),
  • They protect against demagnetization caused by external magnetic sources very well,
  • In other words, thanks to the glossy nickel, gold, or silver finish, the element gains an aesthetic appearance,
  • They have exceptionally high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C and above...
  • The ability for precise shaping or customization to specific needs – neodymium magnets can be produced in many variants of shapes and sizes, which enhances their versatility in applications.
  • Significant importance in advanced technologically fields – are utilized in HDD drives, electric drive mechanisms, medical apparatus or other highly developed apparatuses.

Disadvantages of neodymium magnets:

  • They can break when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts and at the same time increases its overall strength,
  • Magnets lose their power due to exposure to high temperatures. In most cases, when the temperature exceeds 80°C, these magnets experience permanent loss in strength (although it is worth noting that this is dependent on the shape and size of the magnet). To avoid this problem, we offer special magnets marked with the [AH] symbol, which exhibit high temperature resistance. They can operate even at temperatures as high as 230°C or more,
  • They rust in a humid environment. For outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Potential hazard arising from small pieces of magnets pose a threat, if swallowed, which is crucial in the context of child safety. Furthermore, tiny parts of these devices can hinder the diagnostic process in case of swallowing.

Handle Neodymium Magnets Carefully

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium Magnets can attract to each other, pinch the skin, and cause significant injuries.

In the situation of placing a finger in the path of a neodymium magnet, in such a case, a cut or a fracture may occur.

Neodymium magnets can become demagnetized at high temperatures.

Despite the general resilience of magnets, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Neodymium magnets are among the most powerful magnets on Earth. The surprising force they generate between each other can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Magnets made of neodymium are highly susceptible to damage, leading to shattering.

Magnets made of neodymium are delicate as well as will shatter if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

 It is important to keep neodymium magnets away from youngest children.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Pay attention!

So that know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98