SM 18x100 [2xM5] / N42 - magnetic separator
magnetic separator
Catalog no 130269
GTIN: 5906301812715
Diameter Ø [±0,1 mm]
18 mm
Height [±0,1 mm]
100 mm
Weight
0.01 g
221.40 ZŁ with VAT / pcs + price for transport
180.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Hunting for a discount?
Call us now
+48 22 499 98 98
or contact us via
our online form
our website.
Weight as well as structure of neodymium magnets can be verified with our
magnetic mass calculator.
Orders submitted before 14:00 will be dispatched today!
SM 18x100 [2xM5] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Besides their durability, neodymium magnets are valued for these benefits:
- They virtually do not lose power, because even after 10 years, the decline in efficiency is only ~1% (based on calculations),
- They show strong resistance to demagnetization from outside magnetic sources,
- In other words, due to the glossy silver coating, the magnet obtains an aesthetic appearance,
- Magnetic induction on the surface of these magnets is impressively powerful,
- Thanks to their exceptional temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
- With the option for tailored forming and precise design, these magnets can be produced in numerous shapes and sizes, greatly improving design adaptation,
- Wide application in advanced technical fields – they find application in hard drives, electric motors, clinical machines or even other advanced devices,
- Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in compact dimensions, which makes them ideal in miniature devices
Disadvantages of neodymium magnets:
- They are fragile when subjected to a sudden impact. If the magnets are exposed to shocks, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from damage and additionally enhances its overall resistance,
- Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Magnets exposed to damp air can degrade. Therefore, for outdoor applications, we suggest waterproof types made of rubber,
- Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing threads directly in the magnet,
- Health risk from tiny pieces may arise, if ingested accidentally, which is crucial in the protection of children. It should also be noted that small elements from these magnets have the potential to complicate medical imaging after being swallowed,
- Due to the price of neodymium, their cost is relatively high,
Maximum magnetic pulling force – what contributes to it?
The given holding capacity of the magnet represents the highest holding force, calculated in ideal conditions, specifically:
- with the use of low-carbon steel plate serving as a magnetic yoke
- with a thickness of minimum 10 mm
- with a smooth surface
- in conditions of no clearance
- under perpendicular detachment force
- under standard ambient temperature
What influences lifting capacity in practice
In practice, the holding capacity of a magnet is affected by these factors, arranged from the most important to the least relevant:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was measured on the plate surface of 20 mm thickness, when a perpendicular force was applied, in contrast under attempts to slide the magnet the load capacity is reduced by as much as 75%. In addition, even a small distance {between} the magnet and the plate lowers the load capacity.
Be Cautious with Neodymium Magnets
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Neodymium magnets are known for being fragile, which can cause them to crumble.
Neodymium magnets are characterized by considerable fragility. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.
Neodymium Magnets can attract to each other, pinch the skin, and cause significant injuries.
Neodymium magnets jump and clash mutually within a distance of several to around 10 cm from each other.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Do not bring neodymium magnets close to GPS and smartphones.
Neodymium magnets generate strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are the most powerful magnets ever created, and their power can surprise you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.
The magnet is coated with nickel - be careful if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets are generally resilient, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Neodymium magnets should not be around children.
Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Warning!
So that know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous powerful neodymium magnets.