tel: +48 888 99 98 98

neodymium magnets

We provide blue color magnetic Nd2Fe14B - our offer. All magnesy neodymowe on our website are in stock for immediate purchase (see the list). See the magnet pricing for more details see the magnet price list

Magnets for treasure hunters F300 GOLD

Where to purchase strong neodymium magnet? Magnetic holders in solid and airtight steel casing are excellent for use in variable and difficult weather, including during snow and rain read...

magnets with holders

Holders with magnets can be applied to enhance production processes, underwater exploration, or searching for space rocks made of ore read...

We promise to ship ordered magnets if the order is placed before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 18x100 [2xM5] / N42 - magnetic separator

magnetic separator

Catalog no 130269

GTIN: 5906301812715

5

Diameter Ø [±0,1 mm]

18 mm

Height [±0,1 mm]

100 mm

Weight

0.01 g

221.40 with VAT / pcs + price for transport

180.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
180.00 ZŁ
221.40 ZŁ
price from 15 pcs
171.00 ZŁ
210.33 ZŁ
price from 25 pcs
162.00 ZŁ
199.26 ZŁ

Want to negotiate?

Contact us by phone +48 888 99 98 98 or get in touch through inquiry form our website.
Weight as well as appearance of a magnet can be calculated with our our magnetic calculator.

Orders placed before 14:00 will be shipped the same business day.

SM 18x100 [2xM5] / N42 - magnetic separator

Specification/characteristics SM 18x100 [2xM5] / N42 - magnetic separator
properties
values
Cat. no.
130269
GTIN
5906301812715
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
18 mm [±0,1 mm]
Height
100 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
coercivity bHc ?
860-955
kA/m
coercivity bHc ?
10.8-12.0
kOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The main mechanism of the magnetic separator is the use of neodymium magnets, which are placed in a construction made of stainless steel mostly AISI304. As a result, it is possible to precisely separate ferromagnetic particles from other materials. An important element of its operation is the use of repulsion of magnetic poles N and S, which causes magnetic substances to be collected. The thickness of the embedded magnet and its structure's pitch determine the power and range of the separator's operation.
Generally speaking, magnetic separators are designed to segregate ferromagnetic particles. If the cans are made of ferromagnetic materials, the separator will effectively segregate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers are used in the food sector to remove metallic contaminants, for example iron fragments or iron dust. Our rollers are made from durable acid-resistant steel, AISI 304, intended for use in food.
Magnetic rollers, otherwise cylindrical magnets, are used in food production, metal separation as well as waste processing. They help in removing iron dust during the process of separating metals from other materials.
Our magnetic rollers are composed of neodymium magnets placed in a stainless steel tube casing of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar can be with M8 threaded openings, which enables easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars differ in terms of flux density, magnetic force lines and the area of operation of the magnetic field. We produce them in materials, N42 as well as N52.
Often it is believed that the greater the magnet's power, the better. However, the effectiveness of the magnet's power depends on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and anticipated needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is more flat, the magnetic force lines will be short. By contrast, in the case of a thicker magnet, the force lines are longer and extend over a greater distance.
For constructing the casings of magnetic separators - rollers, frequently stainless steel is used, especially types AISI 316, AISI 316L, and AISI 304.
In a saltwater contact, AISI 316 steel is highly recommended due to its excellent corrosion resistance.
Magnetic rollers are characterized by their specific arrangement of poles and their ability to attract magnetic particles directly onto their surface, as opposed to other separators that often use complex filtration systems.
Technical designations and terms related to magnetic separators include among others magnet pitch, polarity, and magnetic induction, as well as the steel type applied.
Magnetic induction for a magnet on a roller is determined using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value close to the magnetic pole. The result is checked in a value table - the lowest is N30. All designations below N27 or N25 indicate recycling that falls below the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including excellent separation efficiency, strong magnetic field, and durability. On the other hand, among the drawbacks, one can mention the need for regular cleaning, higher cost, and potential installation challenges.
For proper maintenance of neodymium magnetic rollers, you should they should be regularly cleaned, avoiding temperatures up to 80°C. The rollers our rollers have waterproofing IP67, so if they are leaky, the magnets inside can oxidize and lose their power. Testing of the rollers is recommended be carried out once every 24 months. Caution should be taken during use, as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, used for separating ferromagnetic contaminants from raw materials. They are used in the food industry, recycling, and plastic processing, where the removal of iron metals and iron filings is essential.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their durability, neodymium magnets are valued for these benefits:

  • Their magnetic field remains stable, and after approximately ten years, it drops only by ~1% (according to research),
  • They remain magnetized despite exposure to magnetic noise,
  • By applying a bright layer of nickel, the element gains a sleek look,
  • The outer field strength of the magnet shows elevated magnetic properties,
  • These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to build),
  • With the option for customized forming and targeted design, these magnets can be produced in numerous shapes and sizes, greatly improving engineering flexibility,
  • Key role in cutting-edge sectors – they are utilized in computer drives, electric motors, diagnostic apparatus as well as other advanced devices,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, in miniature format,

Disadvantages of magnetic elements:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to external force, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture and enhances its overall durability,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to wet conditions can rust. Therefore, for outdoor applications, we suggest waterproof types made of plastic,
  • The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is risky,
  • Potential hazard related to magnet particles may arise, in case of ingestion, which is notable in the protection of children. It should also be noted that minuscule fragments from these magnets can hinder health screening once in the system,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Maximum lifting force for a neodymium magnet – what contributes to it?

The given strength of the magnet means the optimal strength, assessed in ideal conditions, namely:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • in conditions of no clearance
  • with vertical force applied
  • in normal thermal conditions

Lifting capacity in practice – influencing factors

In practice, the holding capacity of a magnet is affected by these factors, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was conducted on a smooth plate of suitable thickness, under perpendicular forces, whereas under attempts to slide the magnet the lifting capacity is smaller. In addition, even a minimal clearance {between} the magnet’s surface and the plate lowers the holding force.

We Recommend Caution with Neodymium Magnets

Neodymium magnets can become demagnetized at high temperatures.

Although magnets are generally resilient, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets away from TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Magnets made of neodymium are incredibly fragile, they easily crack as well as can become damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

  Neodymium magnets should not be in the vicinity children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets are the strongest, most remarkable magnets on earth, and the surprising force between them can shock you at first.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Avoid bringing neodymium magnets close to a phone or GPS.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

If the joining of neodymium magnets is not under control, then they may crumble and crack. Remember not to move them to each other or have them firmly in hands at a distance less than 10 cm.

Safety precautions!

So that know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98