e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnets Nd2Fe14B - our proposal. All magnesy neodymowe in our store are available for immediate purchase (check the list). See the magnet price list for more details see the magnet price list

Magnets for searching F200 GOLD

Where to purchase very strong neodymium magnet? Holders with magnets in airtight and durable steel casing are excellent for use in variable and difficult climate conditions, including snow and rain more information...

magnets with holders

Holders with magnets can be used to facilitate manufacturing, underwater discoveries, or searching for meteors made of ore more...

We promise to ship ordered magnets if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o.
Product available Ships tomorrow

SM 18x100 [2xM5] / N42 - magnetic separator

magnetic separator

Catalog no 130269

GTIN: 5906301812715

5

Diameter Ø [±0,1 mm]

18 mm

Height [±0,1 mm]

100 mm

Weight

0.01 g

221.40 with VAT / pcs + price for transport

180.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
180.00 ZŁ
221.40 ZŁ
price from 15 pcs
171.00 ZŁ
210.33 ZŁ
price from 25 pcs
162.00 ZŁ
199.26 ZŁ

Need advice?

Give us a call +48 22 499 98 98 or let us know through form the contact page.
Weight as well as structure of neodymium magnets can be analyzed with our online calculation tool.

Same-day shipping for orders placed before 14:00.

SM 18x100 [2xM5] / N42 - magnetic separator

Specification/characteristics SM 18x100 [2xM5] / N42 - magnetic separator
properties
values
Cat. no.
130269
GTIN
5906301812715
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
18 mm [±0,1 mm]
Height
100 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

This product serves to catch ferromagnetic impurities from raw materials. It is used for cleaning bulk products (flour, sugar, granules) and liquids (oils, juices). High magnetic induction allows catching the finest iron particles.
The construction is based on a sealed stainless steel housing. The center is filled with NdFeB magnets arranged to maximize the field on the surface. Thanks to this, the rod is durable and hygienic.
Metal filings stick very firmly to the surface, so cleaning requires strength or a trick. The most effective method is using adhesive tape to wrap the dirt and pull it off. For easier maintenance, consider a system with a cleaning sleeve.
The more Gauss, the smaller and weakly magnetic particles will be caught. For basic iron protection, standard power is enough. High induction is required when contaminants are microscopic.
Yes, as a manufacturer, we make rods of any length and diameter (standard is 25mm and 32mm). We offer various tip options: threaded holes (e.g., M8, M10), protruding screws, flat studs, or handles. We ensure fast execution of special orders.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their magnetic performance, neodymium magnets are valued for these benefits:

  • They have stable power, and over around ten years their attraction force decreases symbolically – ~1% (according to theory),
  • They are extremely resistant to demagnetization caused by external field interference,
  • In other words, due to the shiny nickel coating, the magnet obtains an aesthetic appearance,
  • They exhibit superior levels of magnetic induction near the outer area of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • With the option for tailored forming and personalized design, these magnets can be produced in various shapes and sizes, greatly improving application potential,
  • Important function in new technology industries – they serve a purpose in HDDs, electric motors, diagnostic apparatus and technologically developed systems,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of NdFeB magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to physical collisions, we recommend in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage while also increases its overall durability,
  • They lose magnetic force at extreme temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a moist environment – during outdoor use, we recommend using sealed magnets, such as those made of plastic,
  • Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing complex structures directly in the magnet,
  • Possible threat linked to microscopic shards may arise, when consumed by mistake, which is important in the protection of children. It should also be noted that miniature parts from these magnets can interfere with diagnostics once in the system,
  • Due to the price of neodymium, their cost is above average,

Best holding force of the magnet in ideal parameterswhat contributes to it?

The given holding capacity of the magnet means the highest holding force, calculated in the best circumstances, that is:

  • with mild steel, used as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a polished side
  • with no separation
  • with vertical force applied
  • under standard ambient temperature

Key elements affecting lifting force

In practice, the holding capacity of a magnet is affected by the following aspects, in descending order of importance:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was carried out on plates with a smooth surface of suitable thickness, under a perpendicular pulling force, in contrast under attempts to slide the magnet the holding force is lower. Additionally, even a minimal clearance {between} the magnet’s surface and the plate decreases the holding force.

Handle with Care: Neodymium Magnets

Neodymium magnets are especially fragile, which leads to damage.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Avoid bringing neodymium magnets close to a phone or GPS.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Keep neodymium magnets away from the wallet, computer, and TV.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

 It is essential to maintain neodymium magnets away from children.

Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

The magnet is coated with nickel - be careful if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can become demagnetized at high temperatures.

In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.

Neodymium magnets are the strongest magnets ever invented. Their power can surprise you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Neodymium magnets jump and also touch each other mutually within a distance of several to around 10 cm from each other.

Exercise caution!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98