SM 18x100 [2xM5] / N42 - magnetic separator
magnetic separator
Catalog no 130269
GTIN: 5906301812715
Diameter Ø [±0,1 mm]
18 mm
Height [±0,1 mm]
100 mm
Weight
0.01 g
221.40 ZŁ with VAT / pcs + price for transport
180.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Can't decide what to choose?
Call us
+48 888 99 98 98
alternatively get in touch via
request form
through our site.
Weight and appearance of a neodymium magnet can be checked using our
magnetic mass calculator.
Same-day shipping for orders placed before 14:00.
SM 18x100 [2xM5] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their long-term stability, neodymium magnets provide the following advantages:
- They retain their full power for almost ten years – the loss is just ~1% (according to analyses),
- They protect against demagnetization induced by external magnetic influence remarkably well,
- In other words, due to the shiny silver coating, the magnet obtains an professional appearance,
- The outer field strength of the magnet shows remarkable magnetic properties,
- Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
- With the option for fine forming and precise design, these magnets can be produced in multiple shapes and sizes, greatly improving engineering flexibility,
- Key role in advanced technical fields – they are utilized in hard drives, electric motors, medical equipment as well as other advanced devices,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, in miniature format,
Disadvantages of neodymium magnets:
- They may fracture when subjected to a sudden impact. If the magnets are exposed to external force, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from breakage , and at the same time strengthens its overall resistance,
- High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of plastic for outdoor use,
- Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing threads directly in the magnet,
- Potential hazard from tiny pieces may arise, especially if swallowed, which is important in the context of child safety. Additionally, tiny components from these assemblies can disrupt scanning once in the system,
- In cases of tight budgets, neodymium magnet cost is a challenge,
Maximum holding power of the magnet – what contributes to it?
The given lifting capacity of the magnet means the maximum lifting force, calculated in ideal conditions, namely:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- with a thickness of minimum 10 mm
- with a smooth surface
- with no separation
- with vertical force applied
- under standard ambient temperature
Lifting capacity in practice – influencing factors
Practical lifting force is dependent on factors, by priority:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was assessed using a polished steel plate of suitable thickness (min. 20 mm), under perpendicular pulling force, in contrast under parallel forces the load capacity is reduced by as much as fivefold. Moreover, even a small distance {between} the magnet’s surface and the plate decreases the load capacity.
Exercise Caution with Neodymium Magnets
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Magnets are not toys, youngest should not play with them.
Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
Magnets will attract each other within a distance of several to about 10 cm from each other. Remember not to put fingers between magnets or alternatively in their path when attract. Depending on how huge the neodymium magnets are, they can lead to a cut or alternatively a fracture.
Magnets made of neodymium are highly susceptible to damage, leading to their cracking.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Neodymium magnets generate intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.
Keep neodymium magnets away from GPS and smartphones.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets can demagnetize at high temperatures.
While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can shock you at first.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Safety rules!
So you are aware of why neodymium magnets are so dangerous, see the article titled How dangerous are very powerful neodymium magnets?.