MW 10x30 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010009
GTIN/EAN: 5906301810087
Diameter Ø
10 mm [±0,1 mm]
Height
30 mm [±0,1 mm]
Weight
17.67 g
Magnetization Direction
↑ axial
Load capacity
1.92 kg / 18.79 N
Magnetic Induction
610.80 mT / 6108 Gs
Coating
[NiCuNi] Nickel
8.61 ZŁ with VAT / pcs + price for transport
7.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us
+48 22 499 98 98
if you prefer send us a note via
form
the contact form page.
Specifications and shape of a neodymium magnet can be analyzed using our
our magnetic calculator.
Orders submitted before 14:00 will be dispatched today!
Technical specification of the product - MW 10x30 / N38 - cylindrical magnet
Specification / characteristics - MW 10x30 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010009 |
| GTIN/EAN | 5906301810087 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 10 mm [±0,1 mm] |
| Height | 30 mm [±0,1 mm] |
| Weight | 17.67 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 1.92 kg / 18.79 N |
| Magnetic Induction ~ ? | 610.80 mT / 6108 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Engineering modeling of the magnet - data
The following data are the result of a physical calculation. Values rely on algorithms for the material Nd2Fe14B. Real-world performance might slightly differ from theoretical values. Treat these data as a reference point when designing systems.
Table 1: Static force (force vs distance) - power drop
MW 10x30 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
6103 Gs
610.3 mT
|
1.92 kg / 4.23 lbs
1920.0 g / 18.8 N
|
weak grip |
| 1 mm |
4905 Gs
490.5 mT
|
1.24 kg / 2.73 lbs
1240.1 g / 12.2 N
|
weak grip |
| 2 mm |
3823 Gs
382.3 mT
|
0.75 kg / 1.66 lbs
753.3 g / 7.4 N
|
weak grip |
| 3 mm |
2940 Gs
294.0 mT
|
0.45 kg / 0.98 lbs
445.6 g / 4.4 N
|
weak grip |
| 5 mm |
1754 Gs
175.4 mT
|
0.16 kg / 0.35 lbs
158.5 g / 1.6 N
|
weak grip |
| 10 mm |
607 Gs
60.7 mT
|
0.02 kg / 0.04 lbs
19.0 g / 0.2 N
|
weak grip |
| 15 mm |
280 Gs
28.0 mT
|
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
weak grip |
| 20 mm |
154 Gs
15.4 mT
|
0.00 kg / 0.00 lbs
1.2 g / 0.0 N
|
weak grip |
| 30 mm |
63 Gs
6.3 mT
|
0.00 kg / 0.00 lbs
0.2 g / 0.0 N
|
weak grip |
| 50 mm |
19 Gs
1.9 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
Table 2: Slippage force (wall)
MW 10x30 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.38 kg / 0.85 lbs
384.0 g / 3.8 N
|
| 1 mm | Stal (~0.2) |
0.25 kg / 0.55 lbs
248.0 g / 2.4 N
|
| 2 mm | Stal (~0.2) |
0.15 kg / 0.33 lbs
150.0 g / 1.5 N
|
| 3 mm | Stal (~0.2) |
0.09 kg / 0.20 lbs
90.0 g / 0.9 N
|
| 5 mm | Stal (~0.2) |
0.03 kg / 0.07 lbs
32.0 g / 0.3 N
|
| 10 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (sliding) - vertical pull
MW 10x30 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.58 kg / 1.27 lbs
576.0 g / 5.7 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.38 kg / 0.85 lbs
384.0 g / 3.8 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.19 kg / 0.42 lbs
192.0 g / 1.9 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
0.96 kg / 2.12 lbs
960.0 g / 9.4 N
|
Table 4: Material efficiency (saturation) - power losses
MW 10x30 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.19 kg / 0.42 lbs
192.0 g / 1.9 N
|
| 1 mm |
|
0.48 kg / 1.06 lbs
480.0 g / 4.7 N
|
| 2 mm |
|
0.96 kg / 2.12 lbs
960.0 g / 9.4 N
|
| 3 mm |
|
1.44 kg / 3.17 lbs
1440.0 g / 14.1 N
|
| 5 mm |
|
1.92 kg / 4.23 lbs
1920.0 g / 18.8 N
|
| 10 mm |
|
1.92 kg / 4.23 lbs
1920.0 g / 18.8 N
|
| 11 mm |
|
1.92 kg / 4.23 lbs
1920.0 g / 18.8 N
|
| 12 mm |
|
1.92 kg / 4.23 lbs
1920.0 g / 18.8 N
|
Table 5: Thermal resistance (material behavior) - power drop
MW 10x30 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
1.92 kg / 4.23 lbs
1920.0 g / 18.8 N
|
OK |
| 40 °C | -2.2% |
1.88 kg / 4.14 lbs
1877.8 g / 18.4 N
|
OK |
| 60 °C | -4.4% |
1.84 kg / 4.05 lbs
1835.5 g / 18.0 N
|
OK |
| 80 °C | -6.6% |
1.79 kg / 3.95 lbs
1793.3 g / 17.6 N
|
|
| 100 °C | -28.8% |
1.37 kg / 3.01 lbs
1367.0 g / 13.4 N
|
Table 6: Magnet-Magnet interaction (attraction) - field range
MW 10x30 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Sliding Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
18.04 kg / 39.76 lbs
6 166 Gs
|
2.71 kg / 5.96 lbs
2705 g / 26.5 N
|
N/A |
| 1 mm |
14.65 kg / 32.31 lbs
11 003 Gs
|
2.20 kg / 4.85 lbs
2198 g / 21.6 N
|
13.19 kg / 29.08 lbs
~0 Gs
|
| 2 mm |
11.65 kg / 25.68 lbs
9 810 Gs
|
1.75 kg / 3.85 lbs
1747 g / 17.1 N
|
10.48 kg / 23.11 lbs
~0 Gs
|
| 3 mm |
9.13 kg / 20.12 lbs
8 684 Gs
|
1.37 kg / 3.02 lbs
1369 g / 13.4 N
|
8.21 kg / 18.11 lbs
~0 Gs
|
| 5 mm |
5.45 kg / 12.02 lbs
6 710 Gs
|
0.82 kg / 1.80 lbs
818 g / 8.0 N
|
4.91 kg / 10.82 lbs
~0 Gs
|
| 10 mm |
1.49 kg / 3.28 lbs
3 507 Gs
|
0.22 kg / 0.49 lbs
223 g / 2.2 N
|
1.34 kg / 2.95 lbs
~0 Gs
|
| 20 mm |
0.18 kg / 0.39 lbs
1 213 Gs
|
0.03 kg / 0.06 lbs
27 g / 0.3 N
|
0.16 kg / 0.35 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.01 lbs
190 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
126 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
88 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
64 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
48 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
37 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Hazards (implants) - precautionary measures
MW 10x30 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 8.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 6.5 cm |
| Timepiece | 20 Gs (2.0 mT) | 5.0 cm |
| Mobile device | 40 Gs (4.0 mT) | 4.0 cm |
| Car key | 50 Gs (5.0 mT) | 3.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.5 cm |
Table 8: Impact energy (cracking risk) - warning
MW 10x30 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
10.58 km/h
(2.94 m/s)
|
0.08 J | |
| 30 mm |
18.21 km/h
(5.06 m/s)
|
0.23 J | |
| 50 mm |
23.51 km/h
(6.53 m/s)
|
0.38 J | |
| 100 mm |
33.24 km/h
(9.23 m/s)
|
0.75 J |
Table 9: Coating parameters (durability)
MW 10x30 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Pc)
MW 10x30 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 5 528 Mx | 55.3 µWb |
| Pc Coefficient | 1.38 | High (Stable) |
Table 11: Physics of underwater searching
MW 10x30 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 1.92 kg | Standard |
| Water (riverbed) |
2.20 kg
(+0.28 kg buoyancy gain)
|
+14.5% |
1. Shear force
*Warning: On a vertical surface, the magnet retains just approx. 20-30% of its nominal pull.
2. Steel thickness impact
*Thin steel (e.g. computer case) severely limits the holding force.
3. Heat tolerance
*For standard magnets, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 1.38
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other proposals
Pros as well as cons of rare earth magnets.
Benefits
- They have unchanged lifting capacity, and over around 10 years their attraction force decreases symbolically – ~1% (in testing),
- Magnets very well resist against demagnetization caused by external fields,
- The use of an shiny layer of noble metals (nickel, gold, silver) causes the element to have aesthetics,
- The surface of neodymium magnets generates a powerful magnetic field – this is a key feature,
- Neodymium magnets are characterized by extremely high magnetic induction on the magnet surface and are able to act (depending on the shape) even at a temperature of 230°C or more...
- In view of the potential of accurate shaping and customization to individualized projects, neodymium magnets can be manufactured in a broad palette of geometric configurations, which makes them more universal,
- Fundamental importance in modern industrial fields – they are used in mass storage devices, drive modules, medical equipment, as well as modern systems.
- Thanks to concentrated force, small magnets offer high operating force, occupying minimum space,
Weaknesses
- At very strong impacts they can crack, therefore we recommend placing them in special holders. A metal housing provides additional protection against damage and increases the magnet's durability.
- NdFeB magnets lose power when exposed to high temperatures. After reaching 80°C, many of them experience permanent drop of power (a factor is the shape as well as dimensions of the magnet). We offer magnets specially adapted to work at temperatures up to 230°C marked [AH], which are very resistant to heat
- Due to the susceptibility of magnets to corrosion in a humid environment, we recommend using waterproof magnets made of rubber, plastic or other material resistant to moisture, in case of application outdoors
- Limited possibility of producing threads in the magnet and complex forms - preferred is casing - mounting mechanism.
- Potential hazard resulting from small fragments of magnets can be dangerous, if swallowed, which gains importance in the context of child health protection. Furthermore, small components of these magnets are able to complicate diagnosis medical after entering the body.
- With large orders the cost of neodymium magnets can be a barrier,
Pull force analysis
Maximum holding power of the magnet – what contributes to it?
- using a base made of mild steel, acting as a circuit closing element
- with a thickness minimum 10 mm
- with a plane cleaned and smooth
- with zero gap (without impurities)
- during detachment in a direction vertical to the mounting surface
- at standard ambient temperature
Lifting capacity in practice – influencing factors
- Distance (between the magnet and the metal), as even a microscopic distance (e.g. 0.5 mm) can cause a drastic drop in lifting capacity by up to 50% (this also applies to paint, rust or dirt).
- Load vector – maximum parameter is reached only during perpendicular pulling. The shear force of the magnet along the surface is typically several times smaller (approx. 1/5 of the lifting capacity).
- Element thickness – to utilize 100% power, the steel must be adequately massive. Paper-thin metal restricts the attraction force (the magnet "punches through" it).
- Chemical composition of the base – low-carbon steel attracts best. Higher carbon content decrease magnetic properties and lifting capacity.
- Smoothness – full contact is obtained only on polished steel. Any scratches and bumps create air cushions, reducing force.
- Thermal environment – heating the magnet results in weakening of force. Check the thermal limit for a given model.
Lifting capacity testing was conducted on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, in contrast under parallel forces the load capacity is reduced by as much as fivefold. In addition, even a small distance between the magnet and the plate decreases the lifting capacity.
Precautions when working with NdFeB magnets
Medical implants
Warning for patients: Strong magnetic fields affect medical devices. Maintain at least 30 cm distance or ask another person to handle the magnets.
Choking Hazard
NdFeB magnets are not toys. Eating multiple magnets can lead to them pinching intestinal walls, which poses a critical condition and requires immediate surgery.
GPS and phone interference
A strong magnetic field negatively affects the functioning of compasses in phones and navigation systems. Maintain magnets near a device to avoid breaking the sensors.
Demagnetization risk
Control the heat. Heating the magnet to high heat will permanently weaken its magnetic structure and pulling force.
Bone fractures
Protect your hands. Two powerful magnets will join immediately with a force of several hundred kilograms, destroying anything in their path. Be careful!
Protect data
Avoid bringing magnets near a purse, laptop, or TV. The magnetism can irreversibly ruin these devices and wipe information from cards.
Eye protection
Neodymium magnets are ceramic materials, which means they are fragile like glass. Impact of two magnets leads to them breaking into small pieces.
Warning for allergy sufferers
Some people have a sensitization to nickel, which is the typical protective layer for NdFeB magnets. Prolonged contact may cause an allergic reaction. It is best to wear safety gloves.
Conscious usage
Be careful. Rare earth magnets act from a distance and connect with huge force, often quicker than you can react.
Machining danger
Combustion risk: Rare earth powder is highly flammable. Avoid machining magnets in home conditions as this may cause fire.
