e-mail: bok@dhit.pl

neodymium magnets

We provide blue color magnetic Nd2Fe14B - our proposal. All "magnets" on our website are in stock for immediate delivery (check the list). See the magnet price list for more details check the magnet price list

Magnets for treasure hunters F400 GOLD

Where to buy strong neodymium magnet? Magnetic holders in solid and airtight steel enclosure are excellent for use in variable and difficult weather conditions, including during snow and rain see...

magnetic holders

Holders with magnets can be applied to facilitate manufacturing, underwater discoveries, or locating space rocks made of metal see more...

Enjoy shipping of your order on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 10x30 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010009

GTIN: 5906301810087

5

Diameter Ø [±0,1 mm]

10 mm

Height [±0,1 mm]

30 mm

Weight

17.67 g

Magnetization Direction

↑ axial

Load capacity

16.59 kg / 162.69 N

Magnetic Induction

610.80 mT

Coating

[NiCuNi] nickel

10.09 with VAT / pcs + price for transport

8.20 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
8.20 ZŁ
10.09 ZŁ
price from 74 pcs
7.71 ZŁ
9.48 ZŁ
price from 305 pcs
7.22 ZŁ
8.88 ZŁ

Want to talk magnets?

Give us a call +48 22 499 98 98 or get in touch using request form through our site.
Parameters as well as form of a magnet can be reviewed on our online calculation tool.

Orders placed before 14:00 will be shipped the same business day.

MW 10x30 / N38 - cylindrical magnet

Specification/characteristics MW 10x30 / N38 - cylindrical magnet
properties
values
Cat. no.
010009
GTIN
5906301810087
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
10 mm [±0,1 mm]
Height
30 mm [±0,1 mm]
Weight
17.67 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
16.59 kg / 162.69 N
Magnetic Induction ~ ?
610.80 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets i.e. MW 10x30 / N38 are magnets made of neodymium in a cylinder form. They are valued for their very strong magnetic properties, which exceed traditional iron magnets. Thanks to their power, they are often used in devices that require strong adhesion. The typical temperature resistance of such magnets is 80°C, but for magnets in a cylindrical form, this temperature increases with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to enhance their resistance to corrosion. The shape of a cylinder is as well one of the most popular among neodymium magnets. The magnet designated MW 10x30 / N38 with a magnetic force 16.59 kg has a weight of only 17.67 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, are the strongest known material for magnet production. Their production process is complicated and includes sintering special neodymium alloys with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets become ready for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a thin layer of nickel to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, as well as in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of purchasing of cylindrical neodymium magnets, several enterprises offer such products. One of the suggested suppliers is our company Dhit, located in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to visit the website for the latest information as well as promotions, and before visiting, please call.
Due to their strength, cylindrical neodymium magnets are practical in various applications, they can also pose certain risk. Due to their strong magnetic power, they can pull metallic objects with uncontrolled force, which can lead to damaging skin as well as other materials, especially fingers. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin protective layer. Generally, although they are handy, one should handle them carefully.
Neodymium magnets, with the formula Nd2Fe14B, are presently the strongest available magnets on the market. They are produced through a complicated sintering process, which involves fusing special alloys of neodymium with additional metals and then shaping and thermal processing. Their powerful magnetic strength comes from the unique production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often covered with coatings, such as nickel, to shield them from environmental factors and prolong their durability. High temperatures exceeding 130°C can result in a loss of their magnetic properties, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic strength.
A neodymium magnet with classification N52 and N50 is a powerful and strong magnetic piece shaped like a cylinder, providing high force and broad usability. Very good price, 24h delivery, durability and versatility.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their durability, neodymium magnets are valued for these benefits:

  • They have constant strength, and over nearly ten years their attraction force decreases symbolically – ~1% (in testing),
  • They remain magnetized despite exposure to magnetic surroundings,
  • By applying a bright layer of silver, the element gains a modern look,
  • They have extremely strong magnetic induction on the surface of the magnet,
  • Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • With the option for tailored forming and targeted design, these magnets can be produced in various shapes and sizes, greatly improving application potential,
  • Significant impact in cutting-edge sectors – they serve a purpose in data storage devices, electric motors, medical equipment or even high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in tiny dimensions, which makes them useful in miniature devices

Disadvantages of NdFeB magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to shocks, we recommend in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage and additionally reinforces its overall resistance,
  • They lose field intensity at elevated temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is common to use sealed magnets made of synthetic coating for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is risky,
  • Potential hazard due to small fragments may arise, in case of ingestion, which is significant in the protection of children. It should also be noted that minuscule fragments from these magnets have the potential to disrupt scanning when ingested,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Caution with Neodymium Magnets

Neodymium magnets are extremely fragile, they easily break as well as can become damaged.

Neodymium magnets are delicate and will break if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can become demagnetized at high temperatures.

Whilst Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

  Neodymium magnets should not be in the vicinity children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their strength can shock you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets produce intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

If you have a finger between or alternatively on the path of attracting magnets, there may be a large cut or a fracture.

Warning!

So that know how powerful neodymium magnets are and why they are so dangerous, see the article - Dangerous very strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98