e-mail: bok@dhit.pl

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our proposal. Practically all "neodymium magnets" on our website are in stock for immediate delivery (check the list). Check out the magnet pricing for more details check the magnet price list

Magnet for water searching F200 GOLD

Where to buy very strong neodymium magnet? Magnet holders in airtight and durable steel casing are excellent for use in challenging weather conditions, including snow and rain check...

magnetic holders

Holders with magnets can be used to facilitate production processes, exploring underwater areas, or locating space rocks from gold see...

We promise to ship ordered magnets on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 10x30 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010009

GTIN: 5906301810087

5

Diameter Ø [±0,1 mm]

10 mm

Height [±0,1 mm]

30 mm

Weight

17.67 g

Magnetization Direction

↑ axial

Load capacity

16.59 kg / 162.69 N

Magnetic Induction

610.80 mT

Coating

[NiCuNi] nickel

6.38 with VAT / pcs + price for transport

5.19 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
5.19 ZŁ
6.38 ZŁ
price from 150 pcs
4.88 ZŁ
6.00 ZŁ
price from 500 pcs
4.57 ZŁ
5.62 ZŁ

Want to talk magnets?

Give us a call +48 22 499 98 98 if you prefer contact us via request form through our site.
Specifications as well as appearance of a neodymium magnet can be reviewed with our power calculator.

Same-day processing for orders placed before 14:00.

MW 10x30 / N38 - cylindrical magnet

Specification/characteristics MW 10x30 / N38 - cylindrical magnet
properties
values
Cat. no.
010009
GTIN
5906301810087
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
10 mm [±0,1 mm]
Height
30 mm [±0,1 mm]
Weight
17.67 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
16.59 kg / 162.69 N
Magnetic Induction ~ ?
610.80 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets min. MW 10x30 / N38 are magnets created of neodymium in a cylindrical shape. They are known for their very strong magnetic properties, which exceed ordinary ferrite magnets. Because of their strength, they are often used in devices that need strong adhesion. The typical temperature resistance of such magnets is 80 degrees C, but for cylindrical magnets, this temperature rises with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to increase their resistance to corrosion. The cylindrical shape is also one of the most popular among neodymium magnets. The magnet named MW 10x30 / N38 with a magnetic strength 16.59 kg weighs only 17.67 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, are the strongest known material for magnet production. The technology of their production is complicated and includes sintering special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in varied applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a coating of silver to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, and also in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the suggested suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address can be found directly in the contact tab. It's always worth check the site for the latest information as well as offers, and before visiting, please call.
Although, cylindrical neodymium magnets are useful in various applications, they can also pose certain dangers. Due to their significant magnetic power, they can pull metallic objects with significant force, which can lead to crushing skin as well as other materials, especially be careful with fingers. One should not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Moreover, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin protective layer. In short, although they are very useful, they should be handled with due caution.
Neodymium magnets, with the formula Nd2Fe14B, are currently the very strong magnets on the market. They are produced through a advanced sintering process, which involves melting special alloys of neodymium with other metals and then forming and thermal processing. Their unmatched magnetic strength comes from the exceptional production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often covered with thin coatings, such as nickel, to shield them from external factors and extend their lifespan. Temperatures exceeding 130°C can result in a loss of their magnetic strength, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may lose their magnetic strength.
A cylindrical neodymium magnet of class N52 and N50 is a strong and extremely powerful metallic component in the form of a cylinder, that offers high force and versatile application. Attractive price, fast shipping, resistance and multi-functionality.

Advantages and disadvantages of neodymium magnets NdFeB.

Besides their high retention, neodymium magnets are valued for these benefits:

  • They do not lose their even during nearly 10 years – the loss of lifting capacity is only ~1% (theoretically),
  • They show exceptional resistance to demagnetization from external magnetic fields,
  • By applying a shiny layer of nickel, the element gains a clean look,
  • Magnetic induction on the surface of these magnets is impressively powerful,
  • With the right combination of magnetic alloys, they reach increased thermal stability, enabling operation at or above 230°C (depending on the structure),
  • With the option for customized forming and personalized design, these magnets can be produced in various shapes and sizes, greatly improving application potential,
  • Significant impact in cutting-edge sectors – they are utilized in data storage devices, electromechanical systems, clinical machines or even technologically developed systems,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a sudden impact. If the magnets are exposed to shocks, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage while also increases its overall resistance,
  • Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to humidity can oxidize. Therefore, for outdoor applications, we advise waterproof types made of plastic,
  • Limited ability to create precision features in the magnet – the use of a mechanical support is recommended,
  • Health risk due to small fragments may arise, in case of ingestion, which is significant in the protection of children. Furthermore, miniature parts from these magnets may hinder health screening when ingested,
  • Due to a complex production process, their cost is considerably higher,

Magnetic strength at its maximum – what contributes to it?

The given pulling force of the magnet means the maximum force, determined in ideal conditions, specifically:

  • with mild steel, used as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a refined outer layer
  • with no separation
  • with vertical force applied
  • at room temperature

Impact of factors on magnetic holding capacity in practice

Practical lifting force is determined by elements, by priority:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on a smooth plate of optimal thickness, under a perpendicular pulling force, however under parallel forces the holding force is lower. In addition, even a slight gap {between} the magnet’s surface and the plate decreases the load capacity.

Precautions

Neodymium magnets are among the most powerful magnets on Earth. The surprising force they generate between each other can surprise you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

  Do not give neodymium magnets to children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnetic are especially fragile, resulting in their breakage.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets are not recommended for people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Neodymium magnets bounce and also touch each other mutually within a distance of several to around 10 cm from each other.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Keep neodymium magnets away from GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Warning!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98