e-mail: bok@dhit.pl

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our proposal. All "magnets" in our store are in stock for immediate purchase (see the list). See the magnet pricing for more details check the magnet price list

Magnets for treasure hunters F400 GOLD

Where to buy strong neodymium magnet? Magnet holders in solid and airtight enclosure are perfect for use in variable and difficult climate conditions, including snow and rain read...

magnetic holders

Magnetic holders can be used to enhance production processes, underwater exploration, or finding space rocks from gold see more...

Enjoy shipping of your order on the same day by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 10x30 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010009

GTIN: 5906301810087

5

Diameter Ø [±0,1 mm]

10 mm

Height [±0,1 mm]

30 mm

Weight

17.67 g

Magnetization Direction

↑ axial

Load capacity

16.59 kg / 162.69 N

Magnetic Induction

610.80 mT

Coating

[NiCuNi] nickel

6.38 with VAT / pcs + price for transport

5.19 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
5.19 ZŁ
6.38 ZŁ
price from 150 pcs
4.88 ZŁ
6.00 ZŁ
price from 500 pcs
4.57 ZŁ
5.62 ZŁ

Can't decide what to choose?

Call us now +48 888 99 98 98 alternatively contact us by means of our online form the contact section.
Strength along with appearance of neodymium magnets can be checked with our online calculation tool.

Orders submitted before 14:00 will be dispatched today!

MW 10x30 / N38 - cylindrical magnet

Specification/characteristics MW 10x30 / N38 - cylindrical magnet
properties
values
Cat. no.
010009
GTIN
5906301810087
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
10 mm [±0,1 mm]
Height
30 mm [±0,1 mm]
Weight
17.67 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
16.59 kg / 162.69 N
Magnetic Induction ~ ?
610.80 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets min. MW 10x30 / N38 are magnets created of neodymium in a cylindrical shape. They are valued for their extremely powerful magnetic properties, which outperform traditional iron magnets. Because of their strength, they are frequently used in devices that require powerful holding. The typical temperature resistance of these magnets is 80°C, but for magnets in a cylindrical form, this temperature rises with the growth of the magnet. Additionally, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their resistance to corrosion. The cylindrical shape is also very popular among neodymium magnets. The magnet with the designation MW 10x30 / N38 with a magnetic lifting capacity of 16.59 kg weighs only 17.67 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, represent the strongest known material for magnet production. The technology of their production requires a specialized approach and includes sintering special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in varied applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a thin layer of silver to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, and also in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, located in Ożarów Mazowiecki, the address can be found directly in the contact tab. It is recommended to visit the website for the latest information and offers, and before visiting, please call.
Due to their strength, cylindrical neodymium magnets are practical in many applications, they can also pose certain dangers. Because of their significant magnetic power, they can attract metallic objects with great force, which can lead to crushing skin as well as other materials, especially be careful with fingers. Do not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. Generally, although they are very useful, they should be handled with due caution.
Neodymium magnets, with the formula neodymium-iron-boron, are presently the strong magnets on the market. They are produced through a advanced sintering process, which involves melting specific alloys of neodymium with additional metals and then shaping and thermal processing. Their amazing magnetic strength comes from the specific production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often coated with coatings, such as gold, to shield them from external factors and extend their lifespan. High temperatures exceeding 130°C can cause a deterioration of their magnetic properties, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic strength.
A neodymium magnet N50 and N52 is a powerful and highly strong metallic component shaped like a cylinder, featuring high force and universal applicability. Very good price, fast shipping, durability and universal usability.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their magnetic efficiency, neodymium magnets provide the following advantages:

  • They virtually do not lose power, because even after 10 years, the performance loss is only ~1% (according to literature),
  • They are extremely resistant to demagnetization caused by external magnetic fields,
  • By applying a shiny layer of silver, the element gains a modern look,
  • Magnetic induction on the surface of these magnets is very strong,
  • These magnets tolerate high temperatures, often exceeding 230°C, when properly designed (in relation to profile),
  • Thanks to the possibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in different geometries, which expands their functional possibilities,
  • Significant impact in cutting-edge sectors – they serve a purpose in computer drives, electric drives, diagnostic apparatus and other advanced devices,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They can break when subjected to a heavy impact. If the magnets are exposed to shocks, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture while also strengthens its overall robustness,
  • They lose magnetic force at extreme temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a damp environment. For outdoor use, we recommend using moisture-resistant magnets, such as those made of plastic,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing fine shapes directly in the magnet,
  • Possible threat from tiny pieces may arise, if ingested accidentally, which is important in the context of child safety. Moreover, minuscule fragments from these magnets can hinder health screening when ingested,
  • In cases of tight budgets, neodymium magnet cost may not be economically viable,

Breakaway strength of the magnet in ideal conditionswhat it depends on?

The given strength of the magnet represents the optimal strength, measured under optimal conditions, specifically:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • with a thickness of minimum 10 mm
  • with a polished side
  • with no separation
  • with vertical force applied
  • in normal thermal conditions

Determinants of lifting force in real conditions

Practical lifting force is determined by elements, by priority:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, in contrast under shearing force the holding force is lower. In addition, even a minimal clearance {between} the magnet’s surface and the plate reduces the lifting capacity.

Handle with Care: Neodymium Magnets

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

Neodymium magnets produce strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnetic are incredibly fragile, they easily fall apart and can crumble.

Neodymium magnets are characterized by considerable fragility. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

  Neodymium magnets should not be around children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets can become demagnetized at high temperatures.

Even though magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

If you have a finger between or on the path of attracting magnets, there may be a severe cut or even a fracture.

Neodymium magnets are the strongest magnets ever created, and their strength can surprise you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

Keep neodymium magnets away from GPS and smartphones.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Pay attention!

To show why neodymium magnets are so dangerous, read the article - How dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98