tel: +48 22 499 98 98

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our store's offer. Practically all "magnets" on our website are available for immediate delivery (check the list). See the magnet pricing for more details check the magnet price list

Magnet for searching F400 GOLD

Where to buy strong neodymium magnet? Holders with magnets in solid and airtight steel enclosure are ideally suited for use in variable and difficult weather, including snow and rain check...

magnetic holders

Holders with magnets can be used to improve manufacturing, underwater exploration, or finding meteors made of ore more...

Order always shipped if the order is placed by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

UMGGZ 88x8.5 [M8] GZ / N38 - rubber magnetic holder external thread

rubber magnetic holder external thread

Catalog no 340313

GTIN: 5906301814757

5

Diameter Ø [±0,1 mm]

88 mm

Height [±0,1 mm]

8.5 mm

Weight

193 g

Load capacity

42.9 kg / 420.71 N

40.59 with VAT / pcs + price for transport

33.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
33.00 ZŁ
40.59 ZŁ
price from 10 pcs
31.02 ZŁ
38.15 ZŁ
price from 30 pcs
29.04 ZŁ
35.72 ZŁ

Need help making a decision?

Give us a call +48 22 499 98 98 alternatively drop us a message using form the contact form page.
Specifications as well as form of magnetic components can be checked using our force calculator.

Same-day shipping for orders placed before 14:00.

UMGGZ 88x8.5 [M8] GZ / N38 - rubber magnetic holder external thread

Specification/characteristics UMGGZ 88x8.5 [M8] GZ / N38 - rubber magnetic holder external thread
properties
values
Cat. no.
340313
GTIN
5906301814757
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
88 mm [±0,1 mm]
Height
8.5 mm [±0,1 mm]
Weight
193 g [±0,1 mm]
Load capacity ~ ?
42.9 kg / 420.71 N
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their pulling strength, neodymium magnets provide the following advantages:

  • They retain their full power for almost ten years – the loss is just ~1% (in theory),
  • They are very resistant to demagnetization caused by external magnetic fields,
  • Because of the lustrous layer of nickel, the component looks high-end,
  • They have extremely strong magnetic induction on the surface of the magnet,
  • These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to profile),
  • The ability for accurate shaping or adjustment to custom needs – neodymium magnets can be manufactured in many forms and dimensions, which extends the scope of their use cases,
  • Important function in cutting-edge sectors – they serve a purpose in computer drives, electric motors, clinical machines as well as high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in small dimensions, which allows for use in miniature devices

Disadvantages of rare earth magnets:

  • They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to external force, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from cracks , and at the same time enhances its overall durability,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a damp environment – during outdoor use, we recommend using encapsulated magnets, such as those made of polymer,
  • Limited ability to create complex details in the magnet – the use of a magnetic holder is recommended,
  • Health risk from tiny pieces may arise, especially if swallowed, which is significant in the family environments. Additionally, minuscule fragments from these magnets have the potential to interfere with diagnostics once in the system,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Best holding force of the magnet in ideal parameterswhat it depends on?

The given lifting capacity of the magnet means the maximum lifting force, assessed under optimal conditions, specifically:

  • with mild steel, used as a magnetic flux conductor
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • with no separation
  • with vertical force applied
  • at room temperature

Practical lifting capacity: influencing factors

The lifting capacity of a magnet is influenced by in practice the following factors, from primary to secondary:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was conducted on a smooth plate of optimal thickness, under perpendicular forces, whereas under parallel forces the load capacity is reduced by as much as 5 times. Additionally, even a minimal clearance {between} the magnet’s surface and the plate reduces the holding force.

Caution with Neodymium Magnets

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Magnets made of neodymium are particularly delicate, which leads to shattering.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their strength can shock you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets will attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a significant injury may occur. Depending on how huge the neodymium magnets are, they can lead to a cut or a fracture.

Caution!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98