MP 20x8x5 / N38 - ring magnet
ring magnet
Catalog no 030188
GTIN: 5906301812050
Diameter [±0,1 mm]
20 mm
internal diameter Ø [±0,1 mm]
8 mm
Height [±0,1 mm]
5 mm
Weight
14.14 g
Magnetization Direction
↑ axial
Load capacity
2.28 kg / 22.36 N
Magnetic Induction
206.25 mT
Coating
[NiCuNi] nickel
3.44 ZŁ with VAT / pcs + price for transport
2.80 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need help making a decision?
Contact us by phone
+48 22 499 98 98
if you prefer let us know through
request form
the contact page.
Parameters and shape of a magnet can be analyzed using our
modular calculator.
Same-day shipping for orders placed before 14:00.
MP 20x8x5 / N38 - ring magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their immense strength, neodymium magnets offer the following advantages:
- They do not lose their power nearly 10 years – the decrease of power is only ~1% (according to tests),
- They protect against demagnetization induced by ambient electromagnetic environments effectively,
- Because of the brilliant layer of nickel, the component looks high-end,
- The outer field strength of the magnet shows remarkable magnetic properties,
- Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
- Thanks to the flexibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in different geometries, which expands their application range,
- Key role in new technology industries – they are utilized in data storage devices, electric motors, diagnostic apparatus as well as other advanced devices,
- Thanks to their power density, small magnets offer high magnetic performance, while occupying minimal space,
Disadvantages of neodymium magnets:
- They can break when subjected to a powerful impact. If the magnets are exposed to mechanical hits, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from damage and additionally increases its overall durability,
- They lose strength at elevated temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of protective material for outdoor use,
- The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is risky,
- Possible threat from tiny pieces may arise, in case of ingestion, which is notable in the protection of children. Additionally, small elements from these devices might interfere with diagnostics after being swallowed,
- High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which may limit large-scale applications
Maximum lifting force for a neodymium magnet – what affects it?
The given pulling force of the magnet represents the maximum force, measured in ideal conditions, specifically:
- with the use of low-carbon steel plate acting as a magnetic yoke
- with a thickness of minimum 10 mm
- with a smooth surface
- in conditions of no clearance
- under perpendicular detachment force
- in normal thermal conditions
Lifting capacity in real conditions – factors
In practice, the holding capacity of a magnet is conditioned by the following aspects, from crucial to less important:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was performed on plates with a smooth surface of suitable thickness, under perpendicular forces, in contrast under parallel forces the lifting capacity is smaller. Additionally, even a slight gap {between} the magnet’s surface and the plate reduces the load capacity.
Precautions
Keep neodymium magnets far from children.
Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Neodymium magnets can become demagnetized at high temperatures.
Even though magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Magnets made of neodymium are noted for their fragility, which can cause them to become damaged.
Neodymium magnetic are highly fragile, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.
In the case of placing a finger in the path of a neodymium magnet, in that situation, a cut or even a fracture may occur.
Neodymium magnets should not be near people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can shock you.
Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.
Caution!
To illustrate why neodymium magnets are so dangerous, see the article - How dangerous are powerful neodymium magnets?.