SMZR 25x225 / N52 - magnetic separator with handle
magnetic separator with handle
Catalog no 140235
GTIN: 5906301813439
Diameter Ø [±0,1 mm]
25 mm
Height [±0,1 mm]
225 mm
Weight
0.01 g
615.00 ZŁ with VAT / pcs + price for transport
500.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to negotiate?
Call us
+48 888 99 98 98
otherwise contact us using
our online form
through our site.
Parameters as well as structure of magnetic components can be verified with our
magnetic calculator.
Same-day processing for orders placed before 14:00.
SMZR 25x225 / N52 - magnetic separator with handle
Magnetic properties of material N52
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their exceptional pulling force, neodymium magnets offer the following advantages:
- Their magnetic field remains stable, and after around ten years, it drops only by ~1% (theoretically),
- They show exceptional resistance to demagnetization from external magnetic fields,
- In other words, due to the glossy nickel coating, the magnet obtains an stylish appearance,
- They possess intense magnetic force measurable at the magnet’s surface,
- Thanks to their exceptional temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
- Thanks to the freedom in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in different geometries, which increases their usage potential,
- Significant impact in advanced technical fields – they are utilized in HDDs, electromechanical systems, clinical machines along with high-tech tools,
- Thanks to their power density, small magnets offer high magnetic performance, in miniature format,
Disadvantages of magnetic elements:
- They may fracture when subjected to a heavy impact. If the magnets are exposed to external force, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture and additionally strengthens its overall resistance,
- High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Magnets exposed to damp air can rust. Therefore, for outdoor applications, we advise waterproof types made of plastic,
- The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is not feasible,
- Possible threat related to magnet particles may arise, when consumed by mistake, which is important in the context of child safety. Furthermore, miniature parts from these magnets might hinder health screening if inside the body,
- Due to the price of neodymium, their cost is considerably higher,
Maximum holding power of the magnet – what contributes to it?
The given holding capacity of the magnet represents the highest holding force, determined in ideal conditions, specifically:
- with the use of low-carbon steel plate serving as a magnetic yoke
- of a thickness of at least 10 mm
- with a smooth surface
- with zero air gap
- with vertical force applied
- in normal thermal conditions
Determinants of lifting force in real conditions
In practice, the holding capacity of a magnet is affected by these factors, from crucial to less important:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was measured on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, whereas under attempts to slide the magnet the holding force is lower. Additionally, even a slight gap {between} the magnet’s surface and the plate reduces the lifting capacity.
Safety Precautions
Magnets are not toys, youngest should not play with them.
Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnetic are delicate as well as can easily break and shatter.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.
If the joining of neodymium magnets is not controlled, at that time they may crumble and also crack. Remember not to move them to each other or hold them firmly in hands at a distance less than 10 cm.
Neodymium magnets can become demagnetized at high temperatures.
While Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Avoid bringing neodymium magnets close to a phone or GPS.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.
Neodymium magnets produce strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets are the strongest magnets ever created, and their power can surprise you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Pay attention!
Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.