e-mail: bok@dhit.pl

neodymium magnets

We provide blue color magnetic Nd2Fe14B - our store's offer. All magnesy in our store are available for immediate purchase (check the list). Check out the magnet pricing for more details check the magnet price list

Magnets for treasure hunters F200 GOLD

Where to purchase strong neodymium magnet? Magnet holders in solid and airtight steel casing are excellent for use in difficult weather conditions, including during rain and snow see more...

magnetic holders

Holders with magnets can be applied to enhance production, underwater exploration, or finding meteorites from gold see more...

Enjoy shipping of your order on the day of purchase before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SMZR 25x225 / N52 - magnetic separator with handle

magnetic separator with handle

Catalog no 140235

GTIN: 5906301813439

5

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

225 mm

Weight

0.01 g

615.00 with VAT / pcs + price for transport

500.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
500.00 ZŁ
615.00 ZŁ
price from 5 pcs
440.00 ZŁ
541.20 ZŁ

Can't decide what to choose?

Call us now +48 22 499 98 98 if you prefer drop us a message via contact form our website.
Strength along with form of neodymium magnets can be reviewed with our modular calculator.

Same-day processing for orders placed before 14:00.

SMZR 25x225 / N52 - magnetic separator with handle

Specification/characteristics SMZR 25x225 / N52 - magnetic separator with handle
properties
values
Cat. no.
140235
GTIN
5906301813439
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
225 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
coercivity bHc ?
860-995
kA/m
coercivity bHc ?
10.8-12.5
kOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Handheld magnetic separators featuring a grip can be used for various industrial applications, such as sorting raw substances, clearing production lines, or recovering iron from debris. They function thanks to a strong magnetic field, produced through neodymium magnetic cores, located inside a housing containing a handle, which makes handling easier and increases precision during work.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their tremendous field intensity, neodymium magnets offer the following advantages:

  • They virtually do not lose power, because even after ten years, the decline in efficiency is only ~1% (based on calculations),
  • They protect against demagnetization induced by external electromagnetic environments very well,
  • Thanks to the shiny finish and gold coating, they have an elegant appearance,
  • They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
  • Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
  • The ability for custom shaping and adaptation to specific needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which amplifies their functionality across industries,
  • Key role in modern technologies – they are used in HDDs, electric motors, medical equipment or even other advanced devices,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of magnetic elements:

  • They can break when subjected to a powerful impact. If the magnets are exposed to external force, we recommend in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage and reinforces its overall resistance,
  • Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s form). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a humid environment, especially when used outside, we recommend using sealed magnets, such as those made of non-metallic materials,
  • The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is risky,
  • Safety concern linked to microscopic shards may arise, in case of ingestion, which is crucial in the context of child safety. It should also be noted that tiny components from these devices might complicate medical imaging if inside the body,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Maximum magnetic pulling forcewhat contributes to it?

The given holding capacity of the magnet corresponds to the highest holding force, calculated under optimal conditions, specifically:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • with vertical force applied
  • at room temperature

Key elements affecting lifting force

In practice, the holding capacity of a magnet is affected by the following aspects, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined by applying a polished steel plate of suitable thickness (min. 20 mm), under vertically applied force, in contrast under parallel forces the load capacity is reduced by as much as fivefold. Moreover, even a minimal clearance {between} the magnet and the plate decreases the lifting capacity.

Safety Precautions

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnetic are extremely fragile, resulting in shattering.

Neodymium magnets are characterized by considerable fragility. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Neodymium Magnets can attract to each other, pinch the skin, and cause significant injuries.

In the case of placing a finger in the path of a neodymium magnet, in such a case, a cut or even a fracture may occur.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are among the most powerful magnets on Earth. The surprising force they generate between each other can shock you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

Keep neodymium magnets away from TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

 Keep neodymium magnets away from youngest children.

Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Keep neodymium magnets away from GPS and smartphones.

Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Exercise caution!

So that know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous very powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98