e-mail: bok@dhit.pl

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our store's offer. Practically all magnesy neodymowe in our store are available for immediate purchase (see the list). See the magnet price list for more details check the magnet price list

Magnet for treasure hunters F300 GOLD

Where to buy strong magnet? Holders with magnets in solid and airtight steel casing are ideally suited for use in variable and difficult weather conditions, including during snow and rain check...

magnetic holders

Holders with magnets can be used to improve production, underwater discoveries, or locating meteors made of ore more information...

Enjoy shipping of your order on the same day before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 50x50x10 / N38 - lamellar magnet

lamellar magnet

Catalog no 020167

GTIN: 5906301811732

5

length [±0,1 mm]

50 mm

Width [±0,1 mm]

50 mm

Height [±0,1 mm]

10 mm

Weight

187.5 g

Magnetization Direction

↑ axial

Load capacity

39.48 kg / 387.17 N

Magnetic Induction

209.75 mT

Coating

[NiCuNi] nickel

42.88 with VAT / pcs + price for transport

34.86 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
34.86 ZŁ
42.88 ZŁ
price from 20 pcs
32.77 ZŁ
40.31 ZŁ
price from 80 pcs
30.68 ZŁ
37.73 ZŁ

Need help making a decision?

Call us +48 888 99 98 98 otherwise get in touch via form the contact section.
Specifications as well as appearance of magnetic components can be reviewed on our force calculator.

Same-day processing for orders placed before 14:00.

MPL 50x50x10 / N38 - lamellar magnet

Specification/characteristics MPL 50x50x10 / N38 - lamellar magnet
properties
values
Cat. no.
020167
GTIN
5906301811732
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
50 mm [±0,1 mm]
Width
50 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
187.5 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
39.48 kg / 387.17 N
Magnetic Induction ~ ?
209.75 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium flat magnets i.e. MPL 50x50x10 / N38 are magnets created from neodymium in a rectangular form. They are known for their very strong magnetic properties, which surpass ordinary ferrite magnets.
Thanks to their high strength, flat magnets are regularly used in devices that require very strong attraction.
Most common temperature resistance of flat magnets is 80°C, but with larger dimensions, this value can increase.
In addition, flat magnets commonly have special coatings applied to their surfaces, e.g. nickel, gold, or chrome, to increase their strength.
The magnet with the designation MPL 50x50x10 / N38 and a lifting capacity of 39.48 kg with a weight of a mere 187.5 grams, making it the perfect choice for applications requiring a flat shape.
Neodymium flat magnets present a range of advantages compared to other magnet shapes, which lead to them being a perfect solution for various uses:
Contact surface: Thanks to their flat shape, flat magnets ensure a greater contact surface with adjacent parts, which can be beneficial in applications requiring a stronger magnetic connection.
Technology applications: These magnets are often used in various devices, e.g. sensors, stepper motors, or speakers, where the thin and wide shape is necessary for their operation.
Mounting: Their flat shape makes it easier mounting, particularly when there's a need to attach the magnet to some surface.
Design flexibility: The flat shape of the magnets allows designers greater flexibility in placing them in structures, which is more difficult with magnets of other shapes.
Stability: In some applications, the flat base of the flat magnet may offer better stability, minimizing the risk of sliding or rotating. However, one should remember that the optimal shape of the magnet depends on the given use and requirements. In certain cases, other shapes, like cylindrical or spherical, may be a better choice.
How do magnets work? Magnets attract ferromagnetic materials, such as iron elements, nickel, cobalt and special alloys of ferromagnetic metals. Moreover, magnets may lesser affect alloys containing iron, such as steel. Magnets are used in many fields.
The operation of magnets is based on the properties of the magnetic field, which arises from the ordered movement of electrons in their structure. Magnetic fields of magnets creates attractive interactions, which affect objects made of cobalt or other magnetic materials.

Magnets have two poles: north (N) and south (S), which interact with each other when they are oppositely oriented. Poles of the same kind, such as two north poles, repel each other.
Thanks to this principle of operation, magnets are commonly used in electrical devices, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the greatest strength of attraction, making them ideal for applications requiring powerful magnetic fields. Moreover, the strength of a magnet depends on its dimensions and the material it is made of.
Magnets do not attract plastics, glass items, wood or precious stones. Additionally, magnets do not affect most metals, such as copper items, aluminum materials, copper, aluminum, and gold. Although these metals conduct electricity, do not exhibit ferromagnetic properties, meaning that they do not respond to a standard magnetic field, unless exposed to a very strong magnetic field.
It should be noted that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. The Curie temperature is specific to each type of magnet, meaning that under such conditions, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as compasses, credit cards and even electronic devices sensitive to magnetic fields. For this reason, it is important to avoid placing magnets near such devices.
A neodymium magnet of class N52 and N50 is a powerful and strong metallic component in the form of a plate, that offers strong holding power and versatile application. Very good price, 24h delivery, resistance and versatility.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their durability, neodymium magnets are valued for these benefits:

  • Their strength is durable, and after approximately ten years, it drops only by ~1% (according to research),
  • Their ability to resist magnetic interference from external fields is among the best,
  • By applying a bright layer of silver, the element gains a clean look,
  • They possess strong magnetic force measurable at the magnet’s surface,
  • These magnets tolerate elevated temperatures, often exceeding 230°C, when properly designed (in relation to form),
  • With the option for fine forming and personalized design, these magnets can be produced in numerous shapes and sizes, greatly improving engineering flexibility,
  • Significant impact in cutting-edge sectors – they are used in HDDs, electromechanical systems, medical equipment and high-tech tools,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of rare earth magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to mechanical hits, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks while also enhances its overall resistance,
  • They lose magnetic force at high temperatures. Most neodymium magnets experience permanent reduction in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to wet conditions can corrode. Therefore, for outdoor applications, we recommend waterproof types made of coated materials,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing fine shapes directly in the magnet,
  • Potential hazard linked to microscopic shards may arise, if ingested accidentally, which is important in the context of child safety. It should also be noted that miniature parts from these devices may complicate medical imaging when ingested,
  • In cases of large-volume purchasing, neodymium magnet cost may not be economically viable,

Breakaway strength of the magnet in ideal conditionswhat it depends on?

The given lifting capacity of the magnet corresponds to the maximum lifting force, calculated in ideal conditions, specifically:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a polished side
  • with zero air gap
  • in a perpendicular direction of force
  • in normal thermal conditions

Determinants of lifting force in real conditions

The lifting capacity of a magnet is determined by in practice key elements, according to their importance:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on a smooth plate of suitable thickness, under perpendicular forces, however under shearing force the lifting capacity is smaller. In addition, even a slight gap {between} the magnet’s surface and the plate lowers the holding force.

Safety Guidelines with Neodymium Magnets

Keep neodymium magnets away from the wallet, computer, and TV.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets can become demagnetized at high temperatures.

Whilst Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Magnets made of neodymium are fragile and can easily crack and get damaged.

Magnets made of neodymium are highly delicate, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.

  Neodymium magnets should not be in the vicinity youngest children.

Neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can shock you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets attract each other within a distance of several to about 10 cm from each other. Remember not to place fingers between magnets or alternatively in their path when they attract. Magnets, depending on their size, can even cut off a finger or there can be a severe pressure or even a fracture.

Caution!

In order for you to know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98