MPL 50x50x10 / N38 - lamellar magnet
lamellar magnet
Catalog no 020167
GTIN/EAN: 5906301811732
length
50 mm [±0,1 mm]
Width
50 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
187.5 g
Magnetization Direction
↑ axial
Load capacity
33.73 kg / 330.92 N
Magnetic Induction
209.75 mT / 2097 Gs
Coating
[NiCuNi] Nickel
42.88 ZŁ with VAT / pcs + price for transport
34.86 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Give us a call
+48 888 99 98 98
alternatively let us know through
inquiry form
through our site.
Force along with structure of magnetic components can be checked with our
modular calculator.
Orders placed before 14:00 will be shipped the same business day.
Physical properties - MPL 50x50x10 / N38 - lamellar magnet
Specification / characteristics - MPL 50x50x10 / N38 - lamellar magnet
| properties | values |
|---|---|
| Cat. no. | 020167 |
| GTIN/EAN | 5906301811732 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| length | 50 mm [±0,1 mm] |
| Width | 50 mm [±0,1 mm] |
| Height | 10 mm [±0,1 mm] |
| Weight | 187.5 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 33.73 kg / 330.92 N |
| Magnetic Induction ~ ? | 209.75 mT / 2097 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Technical analysis of the product - report
These data represent the outcome of a mathematical calculation. Values rely on algorithms for the material Nd2Fe14B. Actual parameters may deviate from the simulation results. Use these calculations as a supplementary guide during assembly planning.
Table 1: Static pull force (force vs gap) - interaction chart
MPL 50x50x10 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
2097 Gs
209.7 mT
|
33.73 kg / 74.36 lbs
33730.0 g / 330.9 N
|
crushing |
| 1 mm |
2056 Gs
205.6 mT
|
32.43 kg / 71.50 lbs
32430.0 g / 318.1 N
|
crushing |
| 2 mm |
2009 Gs
200.9 mT
|
30.96 kg / 68.27 lbs
30964.6 g / 303.8 N
|
crushing |
| 3 mm |
1957 Gs
195.7 mT
|
29.38 kg / 64.77 lbs
29380.4 g / 288.2 N
|
crushing |
| 5 mm |
1841 Gs
184.1 mT
|
25.99 kg / 57.30 lbs
25992.3 g / 255.0 N
|
crushing |
| 10 mm |
1514 Gs
151.4 mT
|
17.58 kg / 38.75 lbs
17577.6 g / 172.4 N
|
crushing |
| 15 mm |
1194 Gs
119.4 mT
|
10.93 kg / 24.10 lbs
10931.8 g / 107.2 N
|
crushing |
| 20 mm |
922 Gs
92.2 mT
|
6.51 kg / 14.36 lbs
6512.2 g / 63.9 N
|
medium risk |
| 30 mm |
543 Gs
54.3 mT
|
2.26 kg / 4.98 lbs
2260.0 g / 22.2 N
|
medium risk |
| 50 mm |
209 Gs
20.9 mT
|
0.33 kg / 0.74 lbs
334.1 g / 3.3 N
|
safe |
Table 2: Sliding force (wall)
MPL 50x50x10 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
6.75 kg / 14.87 lbs
6746.0 g / 66.2 N
|
| 1 mm | Stal (~0.2) |
6.49 kg / 14.30 lbs
6486.0 g / 63.6 N
|
| 2 mm | Stal (~0.2) |
6.19 kg / 13.65 lbs
6192.0 g / 60.7 N
|
| 3 mm | Stal (~0.2) |
5.88 kg / 12.95 lbs
5876.0 g / 57.6 N
|
| 5 mm | Stal (~0.2) |
5.20 kg / 11.46 lbs
5198.0 g / 51.0 N
|
| 10 mm | Stal (~0.2) |
3.52 kg / 7.75 lbs
3516.0 g / 34.5 N
|
| 15 mm | Stal (~0.2) |
2.19 kg / 4.82 lbs
2186.0 g / 21.4 N
|
| 20 mm | Stal (~0.2) |
1.30 kg / 2.87 lbs
1302.0 g / 12.8 N
|
| 30 mm | Stal (~0.2) |
0.45 kg / 1.00 lbs
452.0 g / 4.4 N
|
| 50 mm | Stal (~0.2) |
0.07 kg / 0.15 lbs
66.0 g / 0.6 N
|
Table 3: Wall mounting (sliding) - behavior on slippery surfaces
MPL 50x50x10 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
10.12 kg / 22.31 lbs
10119.0 g / 99.3 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
6.75 kg / 14.87 lbs
6746.0 g / 66.2 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
3.37 kg / 7.44 lbs
3373.0 g / 33.1 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
16.87 kg / 37.18 lbs
16865.0 g / 165.4 N
|
Table 4: Steel thickness (saturation) - power losses
MPL 50x50x10 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
1.69 kg / 3.72 lbs
1686.5 g / 16.5 N
|
| 1 mm |
|
4.22 kg / 9.30 lbs
4216.3 g / 41.4 N
|
| 2 mm |
|
8.43 kg / 18.59 lbs
8432.5 g / 82.7 N
|
| 3 mm |
|
12.65 kg / 27.89 lbs
12648.8 g / 124.1 N
|
| 5 mm |
|
21.08 kg / 46.48 lbs
21081.2 g / 206.8 N
|
| 10 mm |
|
33.73 kg / 74.36 lbs
33730.0 g / 330.9 N
|
| 11 mm |
|
33.73 kg / 74.36 lbs
33730.0 g / 330.9 N
|
| 12 mm |
|
33.73 kg / 74.36 lbs
33730.0 g / 330.9 N
|
Table 5: Thermal resistance (stability) - power drop
MPL 50x50x10 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
33.73 kg / 74.36 lbs
33730.0 g / 330.9 N
|
OK |
| 40 °C | -2.2% |
32.99 kg / 72.73 lbs
32987.9 g / 323.6 N
|
OK |
| 60 °C | -4.4% |
32.25 kg / 71.09 lbs
32245.9 g / 316.3 N
|
|
| 80 °C | -6.6% |
31.50 kg / 69.45 lbs
31503.8 g / 309.1 N
|
|
| 100 °C | -28.8% |
24.02 kg / 52.95 lbs
24015.8 g / 235.6 N
|
Table 6: Magnet-Magnet interaction (repulsion) - field range
MPL 50x50x10 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Shear Strength (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
67.80 kg / 149.46 lbs
3 611 Gs
|
10.17 kg / 22.42 lbs
10169 g / 99.8 N
|
N/A |
| 1 mm |
66.54 kg / 146.70 lbs
4 156 Gs
|
9.98 kg / 22.01 lbs
9982 g / 97.9 N
|
59.89 kg / 132.03 lbs
~0 Gs
|
| 2 mm |
65.18 kg / 143.70 lbs
4 113 Gs
|
9.78 kg / 21.56 lbs
9777 g / 95.9 N
|
58.66 kg / 129.33 lbs
~0 Gs
|
| 3 mm |
63.74 kg / 140.53 lbs
4 067 Gs
|
9.56 kg / 21.08 lbs
9562 g / 93.8 N
|
57.37 kg / 126.48 lbs
~0 Gs
|
| 5 mm |
60.67 kg / 133.75 lbs
3 968 Gs
|
9.10 kg / 20.06 lbs
9101 g / 89.3 N
|
54.60 kg / 120.38 lbs
~0 Gs
|
| 10 mm |
52.24 kg / 115.18 lbs
3 682 Gs
|
7.84 kg / 17.28 lbs
7836 g / 76.9 N
|
47.02 kg / 103.66 lbs
~0 Gs
|
| 20 mm |
35.33 kg / 77.89 lbs
3 028 Gs
|
5.30 kg / 11.68 lbs
5299 g / 52.0 N
|
31.80 kg / 70.10 lbs
~0 Gs
|
| 50 mm |
7.69 kg / 16.96 lbs
1 413 Gs
|
1.15 kg / 2.54 lbs
1154 g / 11.3 N
|
6.92 kg / 15.26 lbs
~0 Gs
|
| 60 mm |
4.54 kg / 10.01 lbs
1 086 Gs
|
0.68 kg / 1.50 lbs
681 g / 6.7 N
|
4.09 kg / 9.01 lbs
~0 Gs
|
| 70 mm |
2.72 kg / 6.01 lbs
841 Gs
|
0.41 kg / 0.90 lbs
409 g / 4.0 N
|
2.45 kg / 5.41 lbs
~0 Gs
|
| 80 mm |
1.67 kg / 3.68 lbs
658 Gs
|
0.25 kg / 0.55 lbs
250 g / 2.5 N
|
1.50 kg / 3.31 lbs
~0 Gs
|
| 90 mm |
1.05 kg / 2.31 lbs
521 Gs
|
0.16 kg / 0.35 lbs
157 g / 1.5 N
|
0.94 kg / 2.08 lbs
~0 Gs
|
| 100 mm |
0.67 kg / 1.48 lbs
417 Gs
|
0.10 kg / 0.22 lbs
101 g / 1.0 N
|
0.60 kg / 1.33 lbs
~0 Gs
|
Table 7: Protective zones (electronics) - precautionary measures
MPL 50x50x10 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 21.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 16.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 13.0 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 10.0 cm |
| Car key | 50 Gs (5.0 mT) | 9.5 cm |
| Payment card | 400 Gs (40.0 mT) | 4.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 3.0 cm |
Table 8: Impact energy (kinetic energy) - warning
MPL 50x50x10 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
17.38 km/h
(4.83 m/s)
|
2.19 J | |
| 30 mm |
24.39 km/h
(6.78 m/s)
|
4.30 J | |
| 50 mm |
30.43 km/h
(8.45 m/s)
|
6.70 J | |
| 100 mm |
42.78 km/h
(11.88 m/s)
|
13.24 J |
Table 9: Surface protection spec
MPL 50x50x10 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Flux)
MPL 50x50x10 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 61 501 Mx | 615.0 µWb |
| Pc Coefficient | 0.26 | Low (Flat) |
Table 11: Physics of underwater searching
MPL 50x50x10 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 33.73 kg | Standard |
| Water (riverbed) |
38.62 kg
(+4.89 kg buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Note: On a vertical wall, the magnet holds just approx. 20-30% of its perpendicular strength.
2. Steel saturation
*Thin steel (e.g. 0.5mm PC case) significantly reduces the holding force.
3. Thermal stability
*For N38 material, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.26
This simulation demonstrates the magnetic stability of the selected magnet under specific geometric conditions. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Sustainability
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
View also offers
Advantages and disadvantages of neodymium magnets.
Advantages
- They retain magnetic properties for around 10 years – the drop is just ~1% (according to analyses),
- They do not lose their magnetic properties even under close interference source,
- The use of an refined finish of noble metals (nickel, gold, silver) causes the element to have aesthetics,
- Magnetic induction on the surface of the magnet is very high,
- Due to their durability and thermal resistance, neodymium magnets can operate (depending on the shape) even at high temperatures reaching 230°C or more...
- Thanks to versatility in constructing and the capacity to modify to specific needs,
- Fundamental importance in future technologies – they are used in data components, brushless drives, medical equipment, and technologically advanced constructions.
- Compactness – despite small sizes they generate large force, making them ideal for precision applications
Disadvantages
- To avoid cracks under impact, we recommend using special steel housings. Such a solution protects the magnet and simultaneously increases its durability.
- When exposed to high temperature, neodymium magnets suffer a drop in power. Often, when the temperature exceeds 80°C, their power decreases (depending on the size and shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- They rust in a humid environment. For use outdoors we suggest using waterproof magnets e.g. in rubber, plastic
- Due to limitations in creating threads and complex forms in magnets, we propose using cover - magnetic holder.
- Health risk to health – tiny shards of magnets are risky, when accidentally swallowed, which is particularly important in the context of child safety. It is also worth noting that small components of these devices are able to be problematic in diagnostics medical after entering the body.
- With large orders the cost of neodymium magnets is a challenge,
Holding force characteristics
Maximum lifting capacity of the magnet – what it depends on?
- using a base made of high-permeability steel, functioning as a ideal flux conductor
- possessing a thickness of minimum 10 mm to avoid saturation
- with a plane free of scratches
- without the slightest air gap between the magnet and steel
- under vertical application of breakaway force (90-degree angle)
- at temperature room level
Key elements affecting lifting force
- Distance – existence of any layer (paint, tape, gap) acts as an insulator, which reduces capacity steeply (even by 50% at 0.5 mm).
- Direction of force – highest force is available only during perpendicular pulling. The resistance to sliding of the magnet along the plate is usually several times lower (approx. 1/5 of the lifting capacity).
- Wall thickness – the thinner the sheet, the weaker the hold. Part of the magnetic field passes through the material instead of generating force.
- Steel grade – the best choice is pure iron steel. Hardened steels may attract less.
- Plate texture – smooth surfaces guarantee perfect abutment, which improves force. Rough surfaces weaken the grip.
- Heat – NdFeB sinters have a sensitivity to temperature. When it is hot they are weaker, and at low temperatures they can be stronger (up to a certain limit).
Lifting capacity was measured with the use of a steel plate with a smooth surface of suitable thickness (min. 20 mm), under vertically applied force, whereas under attempts to slide the magnet the load capacity is reduced by as much as 5 times. In addition, even a minimal clearance between the magnet and the plate decreases the holding force.
Warnings
Immense force
Before starting, read the rules. Sudden snapping can break the magnet or hurt your hand. Think ahead.
Warning for allergy sufferers
Warning for allergy sufferers: The Ni-Cu-Ni coating contains nickel. If redness occurs, immediately stop working with magnets and use protective gear.
Fire warning
Fire warning: Neodymium dust is highly flammable. Do not process magnets in home conditions as this may cause fire.
Finger safety
Risk of injury: The attraction force is so great that it can cause hematomas, pinching, and broken bones. Protective gloves are recommended.
Heat sensitivity
Avoid heat. NdFeB magnets are susceptible to heat. If you need resistance above 80°C, inquire about HT versions (H, SH, UH).
Beware of splinters
Watch out for shards. Magnets can explode upon violent connection, ejecting sharp fragments into the air. We recommend safety glasses.
Precision electronics
A powerful magnetic field interferes with the operation of magnetometers in phones and GPS navigation. Maintain magnets near a device to avoid breaking the sensors.
No play value
Absolutely keep magnets away from children. Choking hazard is significant, and the consequences of magnets connecting inside the body are life-threatening.
Electronic devices
Equipment safety: Strong magnets can ruin payment cards and sensitive devices (heart implants, medical aids, mechanical watches).
Health Danger
Patients with a heart stimulator should maintain an absolute distance from magnets. The magnetic field can interfere with the functioning of the life-saving device.
