MPL 50x50x10 / N38 - lamellar magnet
lamellar magnet
Catalog no 020167
GTIN: 5906301811732
length [±0,1 mm]
50 mm
Width [±0,1 mm]
50 mm
Height [±0,1 mm]
10 mm
Weight
187.5 g
Magnetization Direction
↑ axial
Load capacity
39.48 kg / 387.17 N
Magnetic Induction
209.75 mT
Coating
[NiCuNi] nickel
42.88 ZŁ with VAT / pcs + price for transport
34.86 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Do you have purchase concerns?
Give us a call
+48 888 99 98 98
or let us know via
inquiry form
our website.
Lifting power as well as structure of a neodymium magnet can be calculated with our
force calculator.
Orders submitted before 14:00 will be dispatched today!
MPL 50x50x10 / N38 - lamellar magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Thanks to their mighty power, flat magnets are frequently used in structures that need exceptional adhesion.
Most common temperature resistance of these magnets is 80 °C, but depending on the dimensions, this value rises.
In addition, flat magnets commonly have special coatings applied to their surfaces, e.g. nickel, gold, or chrome, to increase their corrosion resistance.
The magnet with the designation MPL 50x50x10 / N38 and a lifting capacity of 39.48 kg which weighs only 187.5 grams, making it the perfect choice for applications requiring a flat shape.
Contact surface: Due to their flat shape, flat magnets ensure a larger contact surface with adjacent parts, which is beneficial in applications needing a stronger magnetic connection.
Technology applications: These are often used in various devices, such as sensors, stepper motors, or speakers, where the flat shape is important for their operation.
Mounting: Their flat shape makes mounting, particularly when it is necessary to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets allows designers a lot of flexibility in placing them in structures, which is more difficult with magnets of other shapes.
Stability: In some applications, the flat base of the flat magnet can offer better stability, reducing the risk of shifting or rotating. However, one should remember that the optimal shape of the magnet depends on the specific application and requirements. In some cases, other shapes, such as cylindrical or spherical, may be a better choice.
Magnets have two main poles: north (N) and south (S), which interact with each other when they are oppositely oriented. Poles of the same kind, such as two north poles, act repelling on each other.
Thanks to this principle of operation, magnets are regularly used in electrical devices, such as motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the greatest strength of attraction, making them ideal for applications requiring powerful magnetic fields. Additionally, the strength of a magnet depends on its dimensions and the materials used.
It should be noted that high temperatures can weaken the magnet's effect. Every magnetic material has its Curie point, meaning that once this temperature is exceeded, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as navigational instruments, magnetic stripe cards and even medical equipment, like pacemakers. For this reason, it is important to exercise caution when using magnets.
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their magnetic efficiency, neodymium magnets provide the following advantages:
- They do not lose their power approximately ten years – the reduction of strength is only ~1% (theoretically),
- They show strong resistance to demagnetization from outside magnetic sources,
- Because of the lustrous layer of gold, the component looks aesthetically refined,
- They have extremely strong magnetic induction on the surface of the magnet,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- The ability for custom shaping or customization to specific needs – neodymium magnets can be manufactured in multiple variants of geometries, which extends the scope of their use cases,
- Significant impact in advanced technical fields – they are utilized in hard drives, electric motors, medical equipment as well as sophisticated instruments,
- Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications
Disadvantages of magnetic elements:
- They are fragile when subjected to a heavy impact. If the magnets are exposed to physical collisions, it is advisable to use in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks and additionally reinforces its overall durability,
- High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Magnets exposed to moisture can corrode. Therefore, for outdoor applications, it's best to use waterproof types made of plastic,
- Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing complex structures directly in the magnet,
- Health risk due to small fragments may arise, in case of ingestion, which is crucial in the context of child safety. Additionally, minuscule fragments from these devices have the potential to disrupt scanning if inside the body,
- High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which can restrict large-scale applications
Breakaway strength of the magnet in ideal conditions – what affects it?
The given strength of the magnet corresponds to the optimal strength, calculated in ideal conditions, namely:
- with the use of low-carbon steel plate serving as a magnetic yoke
- of a thickness of at least 10 mm
- with a polished side
- with zero air gap
- with vertical force applied
- at room temperature
Lifting capacity in real conditions – factors
Practical lifting force is dependent on factors, by priority:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was checked on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, in contrast under shearing force the load capacity is reduced by as much as 5 times. In addition, even a slight gap {between} the magnet’s surface and the plate decreases the lifting capacity.
We Recommend Caution with Neodymium Magnets
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.
If joining of neodymium magnets is not controlled, at that time they may crumble and crack. Remember not to approach them to each other or have them firmly in hands at a distance less than 10 cm.
Neodymium magnetic are extremely fragile, they easily crack and can crumble.
Neodymium magnets are characterized by considerable fragility. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Neodymium magnets are the most powerful, most remarkable magnets on earth, and the surprising force between them can surprise you at first.
Familiarize yourself with our information to properly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Do not give neodymium magnets to youngest children.
Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Avoid bringing neodymium magnets close to a phone or GPS.
Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Neodymium magnets can demagnetize at high temperatures.
Despite the general resilience of magnets, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Pay attention!
In order for you to know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous very powerful neodymium magnets.
