e-mail: bok@dhit.pl

neodymium magnets

We provide red color magnets Nd2Fe14B - our proposal. Practically all magnesy neodymowe in our store are in stock for immediate delivery (see the list). See the magnet pricing for more details see the magnet price list

Magnet for searching F400 GOLD

Where to purchase very strong neodymium magnet? Magnetic holders in solid and airtight enclosure are excellent for use in challenging weather, including snow and rain see...

magnets with holders

Holders with magnets can be used to facilitate production, underwater discoveries, or finding meteors made of metal see more...

We promise to ship ordered magnets on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 50x50x10 / N38 - lamellar magnet

lamellar magnet

Catalog no 020167

GTIN: 5906301811732

5

length [±0,1 mm]

50 mm

Width [±0,1 mm]

50 mm

Height [±0,1 mm]

10 mm

Weight

187.5 g

Magnetization Direction

↑ axial

Load capacity

39.48 kg / 387.17 N

Magnetic Induction

209.75 mT

Coating

[NiCuNi] nickel

42.88 with VAT / pcs + price for transport

34.86 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
34.86 ZŁ
42.88 ZŁ
price from 20 pcs
32.77 ZŁ
40.31 ZŁ
price from 80 pcs
30.68 ZŁ
37.73 ZŁ

Need advice?

Call us +48 22 499 98 98 alternatively let us know through contact form the contact form page.
Specifications as well as structure of a magnet can be checked on our our magnetic calculator.

Orders placed before 14:00 will be shipped the same business day.

MPL 50x50x10 / N38 - lamellar magnet

Specification/characteristics MPL 50x50x10 / N38 - lamellar magnet
properties
values
Cat. no.
020167
GTIN
5906301811732
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
50 mm [±0,1 mm]
Width
50 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
187.5 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
39.48 kg / 387.17 N
Magnetic Induction ~ ?
209.75 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium flat magnets i.e. MPL 50x50x10 / N38 are magnets made from neodymium in a rectangular form. They are valued for their extremely powerful magnetic properties, which outshine traditional iron magnets.
Due to their strength, flat magnets are commonly applied in devices that need strong holding power.
The standard temperature resistance of these magnets is 80 °C, but with larger dimensions, this value grows.
Additionally, flat magnets commonly have different coatings applied to their surfaces, such as nickel, gold, or chrome, to improve their corrosion resistance.
The magnet with the designation MPL 50x50x10 / N38 and a lifting capacity of 39.48 kg weighing only 187.5 grams, making it the perfect choice for applications requiring a flat shape.
Neodymium flat magnets offer a range of advantages versus other magnet shapes, which make them being the best choice for a multitude of projects:
Contact surface: Due to their flat shape, flat magnets ensure a greater contact surface with other components, which can be beneficial in applications needing a stronger magnetic connection.
Technology applications: These magnets are often used in different devices, such as sensors, stepper motors, or speakers, where the flat shape is important for their operation.
Mounting: The flat form's flat shape makes mounting, particularly when it is required to attach the magnet to some surface.
Design flexibility: The flat shape of the magnets allows creators a lot of flexibility in arranging them in structures, which is more difficult with magnets of more complex shapes.
Stability: In certain applications, the flat base of the flat magnet can provide better stability, minimizing the risk of sliding or rotating. However, one should remember that the optimal shape of the magnet is dependent on the specific application and requirements. In certain cases, other shapes, such as cylindrical or spherical, may be more appropriate.
How do magnets work? Magnets attract objects made of ferromagnetic materials, such as iron elements, objects containing nickel, cobalt and alloys of metals with magnetic properties. Moreover, magnets may lesser affect alloys containing iron, such as steel. It’s worth noting that magnets are utilized in various devices and technologies.
The operation of magnets is based on the properties of the magnetic field, which arises from the ordered movement of electrons in their structure. The magnetic field of these objects creates attractive forces, which attract materials containing iron or other magnetic materials.

Magnets have two poles: north (N) and south (S), which attract each other when they are oppositely oriented. Poles of the same kind, e.g. two north poles, act repelling on each other.
Thanks to this principle of operation, magnets are commonly used in electrical devices, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them indispensable for applications requiring powerful magnetic fields. Additionally, the strength of a magnet depends on its dimensions and the materials used.
Not all materials react to magnets, and examples of such substances are plastic, glass items, wooden materials or precious stones. Moreover, magnets do not affect certain metals, such as copper items, aluminum materials, gold. Although these metals conduct electricity, do not exhibit ferromagnetic properties, meaning that they do not respond to a standard magnetic field, unless they are subjected to an extremely strong magnetic field.
It should be noted that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. Every magnetic material has its Curie point, meaning that under such conditions, the magnet stops being magnetic. Additionally, strong magnets can interfere with the operation of devices, such as compasses, credit cards or medical equipment, like pacemakers. For this reason, it is important to avoid placing magnets near such devices.
A neodymium plate magnet in classes N52 and N50 is a strong and extremely powerful metal object with the shape of a plate, that provides strong holding power and universal application. Competitive price, fast shipping, durability and universal usability.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their magnetic efficiency, neodymium magnets provide the following advantages:

  • They virtually do not lose power, because even after 10 years, the decline in efficiency is only ~1% (in laboratory conditions),
  • They protect against demagnetization induced by ambient magnetic fields remarkably well,
  • Because of the brilliant layer of gold, the component looks high-end,
  • They have extremely strong magnetic induction on the surface of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • Thanks to the possibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in different geometries, which broadens their usage potential,
  • Key role in modern technologies – they serve a purpose in computer drives, electromechanical systems, medical equipment along with sophisticated instruments,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They may fracture when subjected to a heavy impact. If the magnets are exposed to shocks, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture while also increases its overall durability,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to wet conditions can degrade. Therefore, for outdoor applications, we suggest waterproof types made of plastic,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing holes directly in the magnet,
  • Potential hazard due to small fragments may arise, especially if swallowed, which is significant in the protection of children. It should also be noted that miniature parts from these magnets might complicate medical imaging when ingested,
  • In cases of tight budgets, neodymium magnet cost may not be economically viable,

Maximum lifting force for a neodymium magnet – what it depends on?

The given strength of the magnet means the optimal strength, determined under optimal conditions, namely:

  • with mild steel, used as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • with vertical force applied
  • under standard ambient temperature

Practical aspects of lifting capacity – factors

The lifting capacity of a magnet depends on in practice key elements, according to their importance:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined using a smooth steel plate of optimal thickness (min. 20 mm), under vertically applied force, whereas under attempts to slide the magnet the load capacity is reduced by as much as fivefold. Moreover, even a slight gap {between} the magnet’s surface and the plate reduces the lifting capacity.

Exercise Caution with Neodymium Magnets

Keep neodymium magnets away from GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can demagnetize at high temperatures.

Despite the general resilience of magnets, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Magnets made of neodymium are characterized by being fragile, which can cause them to crumble.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their power can shock you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

  Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.

Neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

Neodymium magnets will bounce and touch together within a distance of several to around 10 cm from each other.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Exercise caution!

So you are aware of why neodymium magnets are so dangerous, read the article titled How dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98