BM 750x180x70 [4x M8] - magnetic beam
magnetic beam
Catalog no 090223
GTIN: 5906301812586
length [±0,1 mm]
750 mm
Width [±0,1 mm]
180 mm
Height [±0,1 mm]
70 mm
Weight
48150 g
6914.94 ZŁ with VAT / pcs + price for transport
5621.90 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Looking for a better price?
Call us
+48 22 499 98 98
if you prefer send us a note via
our online form
the contact page.
Lifting power as well as shape of neodymium magnets can be verified with our
force calculator.
Orders placed before 14:00 will be shipped the same business day.
BM 750x180x70 [4x M8] - magnetic beam
Magnetic properties of material
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Apart from their strong magnetism, neodymium magnets have these key benefits:
- They retain their attractive force for around ten years – the loss is just ~1% (according to analyses),
- They are very resistant to demagnetization caused by external magnetic sources,
- Thanks to the glossy finish and gold coating, they have an visually attractive appearance,
- They have very high magnetic induction on the surface of the magnet,
- Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
- The ability for custom shaping or adaptation to specific needs – neodymium magnets can be manufactured in many forms and dimensions, which enhances their versatility in applications,
- Significant impact in advanced technical fields – they find application in computer drives, electric motors, medical equipment along with technologically developed systems,
- Thanks to their efficiency per volume, small magnets offer high magnetic performance, while occupying minimal space,
Disadvantages of NdFeB magnets:
- They are fragile when subjected to a heavy impact. If the magnets are exposed to external force, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks and additionally reinforces its overall resistance,
- They lose strength at elevated temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Due to corrosion risk in humid conditions, it is common to use sealed magnets made of protective material for outdoor use,
- The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is not feasible,
- Health risk from tiny pieces may arise, when consumed by mistake, which is significant in the protection of children. Furthermore, tiny components from these assemblies have the potential to disrupt scanning after being swallowed,
- Due to expensive raw materials, their cost is above average,
Optimal lifting capacity of a neodymium magnet – what contributes to it?
The given strength of the magnet corresponds to the optimal strength, determined in the best circumstances, namely:
- with the use of low-carbon steel plate serving as a magnetic yoke
- with a thickness of minimum 10 mm
- with a polished side
- in conditions of no clearance
- with vertical force applied
- in normal thermal conditions
Practical lifting capacity: influencing factors
In practice, the holding capacity of a magnet is conditioned by the following aspects, arranged from the most important to the least relevant:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was conducted on plates with a smooth surface of optimal thickness, under perpendicular forces, however under parallel forces the holding force is lower. In addition, even a minimal clearance {between} the magnet’s surface and the plate decreases the holding force.
Safety Precautions
Neodymium magnets can demagnetize at high temperatures.
Despite the fact that magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
Magnets may crack or alternatively crumble with careless joining to each other. Remember not to move them to each other or have them firmly in hands at a distance less than 10 cm.
Neodymium magnets are among the most powerful magnets on Earth. The surprising force they generate between each other can surprise you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.
Neodymium magnets produce strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.
Maintain neodymium magnets far from children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Keep neodymium magnets away from GPS and smartphones.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnetic are known for being fragile, which can cause them to become damaged.
Neodymium magnets are extremely delicate, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Pay attention!
To show why neodymium magnets are so dangerous, see the article - How very dangerous are very strong neodymium magnets?.
