e-mail: bok@dhit.pl

neodymium magnets

We offer red color magnets Nd2Fe14B - our offer. Practically all "magnets" on our website are available for immediate delivery (check the list). Check out the magnet price list for more details see the magnet price list

Magnet for fishing F200 GOLD

Where to purchase very strong magnet? Magnetic holders in airtight, solid enclosure are excellent for use in difficult, demanding climate conditions, including in the rain and snow read...

magnetic holders

Holders with magnets can be applied to improve manufacturing, underwater exploration, or searching for meteorites from gold see more...

We promise to ship ordered magnets on the same day before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available Ships tomorrow

NC NeoCube fi 5 mm kuleczki kolorowe / N38 - neocube

neocube

Catalog no 120229

GTIN: 5906301812685

5

Weight

145 g

Magnetization Direction

↑ axial

Coating

[NiCuNi] nickel

49.99 with VAT / pcs + price for transport

40.64 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
40.64 ZŁ
49.99 ZŁ
price from 10 pcs
38.61 ZŁ
47.49 ZŁ
price from 40 pcs
36.58 ZŁ
44.99 ZŁ

Looking for a better price?

Call us now +48 888 99 98 98 otherwise let us know via form the contact page.
Weight as well as shape of magnetic components can be calculated using our online calculation tool.

Order by 14:00 and we’ll ship today!

NC NeoCube fi 5 mm kuleczki kolorowe / N38 - neocube

Specification/characteristics NC NeoCube fi 5 mm kuleczki kolorowe / N38 - neocube
properties
values
Cat. no.
120229
GTIN
5906301812685
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Weight
145 g [±0,1 mm]
Magnetization Direction
↑ axial
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

These small neodymium balls are a creative anti-stress gadget. You can make a cube, sphere, or even complex geometric figures. It is an ideal gift for teenagers and adults looking for intellectual entertainment.
Warning: balls are dangerous if swallowed, so the toy is for people 14+. Swallowing several balls can lead to dangerous joining in the intestines. We recommend use by persons aware of the danger.
With intense use, the coating of balls (especially colored ones) may undergo natural wear. The most durable are nickel (silver) balls, as it is a galvanic coating. Coating wear does not affect the magnetic strength of the balls.
Combining several sets is great fun and more possibilities. Mixing sizes is difficult, but mixing colors gives great visual effects. With two sets (432 balls) you can build much more complex figures.
The best method to organize balls is to create a long chain. You can find many video tutorials online on how to make basic shapes. Beginnings can be hard, but the satisfaction of making a cube is huge.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their long-term stability, neodymium magnets provide the following advantages:

  • They virtually do not lose strength, because even after 10 years, the decline in efficiency is only ~1% (in laboratory conditions),
  • They remain magnetized despite exposure to magnetic noise,
  • The use of a polished silver surface provides a eye-catching finish,
  • They have extremely strong magnetic induction on the surface of the magnet,
  • Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
  • The ability for custom shaping as well as customization to specific needs – neodymium magnets can be manufactured in multiple variants of geometries, which enhances their versatility in applications,
  • Wide application in new technology industries – they are utilized in data storage devices, electromechanical systems, medical equipment and high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in small dimensions, which makes them ideal in miniature devices

Disadvantages of rare earth magnets:

  • They can break when subjected to a sudden impact. If the magnets are exposed to external force, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks , and at the same time strengthens its overall strength,
  • They lose power at increased temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to damp air can oxidize. Therefore, for outdoor applications, we suggest waterproof types made of coated materials,
  • Limited ability to create internal holes in the magnet – the use of a external casing is recommended,
  • Health risk from tiny pieces may arise, especially if swallowed, which is important in the health of young users. Moreover, minuscule fragments from these devices may disrupt scanning after being swallowed,
  • In cases of mass production, neodymium magnet cost may not be economically viable,

Maximum holding power of the magnet – what contributes to it?

The given holding capacity of the magnet represents the highest holding force, calculated in the best circumstances, namely:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • with a thickness of minimum 10 mm
  • with a refined outer layer
  • with zero air gap
  • with vertical force applied
  • under standard ambient temperature

Lifting capacity in real conditions – factors

Practical lifting force is dependent on factors, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, however under shearing force the load capacity is reduced by as much as 75%. In addition, even a minimal clearance {between} the magnet and the plate decreases the holding force.

Safety Guidelines with Neodymium Magnets

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

The magnet is coated with nickel - be careful if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

 Maintain neodymium magnets far from children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets attract each other within a distance of several to around 10 cm from each other. Remember not to put fingers between magnets or in their path when attract. Depending on how large the neodymium magnets are, they can lead to a cut or a fracture.

Neodymium magnetic are particularly fragile, which leads to damage.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their power can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Keep neodymium magnets away from GPS and smartphones.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Safety rules!

In order for you to know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous very strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98