e-mail: bok@dhit.pl

neodymium magnets

We provide red color magnets Nd2Fe14B - our proposal. Practically all "magnets" in our store are in stock for immediate delivery (check the list). Check out the magnet price list for more details see the magnet price list

Magnets for fishing F200 GOLD

Where to buy strong magnet? Holders with magnets in airtight, solid steel casing are excellent for use in difficult, demanding weather, including in the rain and snow read...

magnetic holders

Holders with magnets can be used to improve production, underwater discoveries, or searching for meteors made of metal check...

We promise to ship ordered magnets on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

BM 700x180x75 [8xM10] - magnetic beam

magnetic beam

Catalog no 090472

GTIN: 5906301812616

5

length [±0,1 mm]

700 mm

Width [±0,1 mm]

180 mm

Height [±0,1 mm]

75 mm

Weight

35000 g

6150.00 with VAT / pcs + price for transport

5000.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
5000.00 ZŁ
6150.00 ZŁ
price from 5 pcs
4700.00 ZŁ
5781.00 ZŁ

Can't decide what to choose?

Call us +48 22 499 98 98 otherwise let us know through request form through our site.
Strength along with structure of a magnet can be tested with our our magnetic calculator.

Same-day processing for orders placed before 14:00.

BM 700x180x75 [8xM10] - magnetic beam

Specification/characteristics BM 700x180x75 [8xM10] - magnetic beam
properties
values
Cat. no.
090472
GTIN
5906301812616
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
700 mm [±0,1 mm]
Width
180 mm [±0,1 mm]
Height
75 mm [±0,1 mm]
Weight
35000 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material

properties
values
units

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Magnetic beams are components mounted above conveyor systems, which use neodymium magnets to separate iron contaminants from the transported material. Any metal parts are attracted to the underside of the beam. Magnetic beams are widely used in the food industry, mineral raw materials and other industrial sectors.
The selection of the magnetic beam depends on the width of the conveyor and the cross-section of the beam. A larger cross-section allows the beam to be suspended higher above the belt. For example, for loose materials with a depth of 2-3 cm, a beam with a cross-section of 80x40 mm will suffice, while for a layer of material over 8 cm, a larger beam is required. We also manufacture magnetic beams made to order according to customer requirements.
The basis of the magnetic beam’s operation are strong neodymium magnets, which generate a magnetic field attracting metal elements. This causes all metals in the transport to be captured and stopped. Mounted at the right angle, it can function as a chute separator. Thanks to its sealed housing made of stainless steel, the device is durable and reliable in harsh industrial conditions.
Magnetic beams effectively capture iron elements, such as metal balls, bolts and nuts, metal items, such as nails or keys. The magnetic field strength of the beam allows for capturing metals from a distance of up to 120 mm. Thanks to this, magnetic beams are effective in metal separation in industries such as recycling, food processing, and plastic processing.
Magnetic beams are indispensable in industry due to their effectiveness in metal separation, especially in industrial sectors requiring precise contaminant separation. Thanks to their design and strong neodymium magnets guarantee effectiveness in challenging industrial conditions. Moreover, the ability to customize the beam parameters to meet the specific requirements of the customer makes them a versatile solution for many industrial sectors.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their high retention, neodymium magnets are valued for these benefits:

  • They have stable power, and over around 10 years their attraction force decreases symbolically – ~1% (in testing),
  • They protect against demagnetization induced by ambient magnetic influence very well,
  • In other words, due to the metallic silver coating, the magnet obtains an professional appearance,
  • The outer field strength of the magnet shows remarkable magnetic properties,
  • Thanks to their enhanced temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
  • With the option for customized forming and targeted design, these magnets can be produced in multiple shapes and sizes, greatly improving engineering flexibility,
  • Key role in cutting-edge sectors – they are utilized in computer drives, electric drives, diagnostic apparatus as well as sophisticated instruments,
  • Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications

Disadvantages of rare earth magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to mechanical hits, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture while also increases its overall strength,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s dimensions). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Magnets exposed to humidity can oxidize. Therefore, for outdoor applications, it's best to use waterproof types made of rubber,
  • The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is difficult,
  • Health risk related to magnet particles may arise, especially if swallowed, which is significant in the health of young users. Furthermore, tiny components from these magnets can hinder health screening when ingested,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Maximum magnetic pulling forcewhat affects it?

The given strength of the magnet corresponds to the optimal strength, assessed in ideal conditions, specifically:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • with a thickness of minimum 10 mm
  • with a polished side
  • with zero air gap
  • in a perpendicular direction of force
  • in normal thermal conditions

Impact of factors on magnetic holding capacity in practice

The lifting capacity of a magnet depends on in practice key elements, from primary to secondary:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured by applying a steel plate with a smooth surface of optimal thickness (min. 20 mm), under vertically applied force, in contrast under attempts to slide the magnet the lifting capacity is smaller. Moreover, even a minimal clearance {between} the magnet and the plate decreases the lifting capacity.

Handle Neodymium Magnets Carefully

Neodymium magnets are the most powerful magnets ever invented. Their power can surprise you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

 It is essential to keep neodymium magnets away from children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

In the situation of holding a finger in the path of a neodymium magnet, in such a case, a cut or even a fracture may occur.

Magnets made of neodymium are highly fragile, they easily crack as well as can become damaged.

Magnets made of neodymium are fragile and will crack if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Keep neodymium magnets away from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Do not bring neodymium magnets close to GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can demagnetize at high temperatures.

Under specific conditions, Neodymium magnets may experience demagnetization when subjected to high temperatures.

Safety rules!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98