e-mail: bok@dhit.pl

neodymium magnets

We provide red color magnets Nd2Fe14B - our proposal. All magnesy on our website are available for immediate delivery (see the list). See the magnet price list for more details check the magnet price list

Magnets for water searching F200 GOLD

Where to buy very strong neodymium magnet? Holders with magnets in solid and airtight enclosure are ideally suited for use in variable and difficult weather conditions, including snow and rain more...

magnetic holders

Holders with magnets can be applied to improve production, exploring underwater areas, or locating meteors from gold see more...

Enjoy delivery of your order if the order is placed by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

BM 700x180x75 [8xM10] - magnetic beam

magnetic beam

Catalog no 090472

GTIN: 5906301812616

5

length [±0,1 mm]

700 mm

Width [±0,1 mm]

180 mm

Height [±0,1 mm]

75 mm

Weight

35000 g

6150.00 with VAT / pcs + price for transport

5000.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
5000.00 ZŁ
6150.00 ZŁ
price from 5 pcs
4700.00 ZŁ
5781.00 ZŁ

Hunting for a discount?

Call us now +48 22 499 98 98 or let us know through request form our website.
Lifting power as well as shape of magnets can be estimated with our power calculator.

Same-day processing for orders placed before 14:00.

BM 700x180x75 [8xM10] - magnetic beam

Specification/characteristics BM 700x180x75 [8xM10] - magnetic beam
properties
values
Cat. no.
090472
GTIN
5906301812616
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
700 mm [±0,1 mm]
Width
180 mm [±0,1 mm]
Height
75 mm [±0,1 mm]
Weight
35000 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material

properties
values
units

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

A magnetic beam is a device mounted above conveyor belts, which are based on strong neodymium magnets to separate iron contaminants from the transported material. Any metal parts are attracted to the underside of the beam. The use of such beams is particularly common in recycling, plastic processing and many other industries.
The selection of the magnetic beam depends on the width of the conveyor and the cross-section of the beam. A larger cross-section allows the beam to be suspended higher above the belt. For example, for loose materials with a depth of 2-3 cm, a beam with a cross-section of 80x40 mm will suffice, whereas for a layer of material over 8 cm, a larger beam is required. Custom-sized beams are available upon request.
The basis of the magnetic beam’s operation are strong neodymium magnets, which create a field capable of attracting iron contaminants. This causes all metals in the transport to be captured and stopped. The beam can be mounted above the conveyor or set at an angle as a chute separator. Thanks to its sealed housing made of stainless steel, ensuring long-lasting and effective operation in various industries.
These devices are used for removing any iron contaminants, such as metal balls, bolts and nuts, metal items, such as nails or keys. The magnetic field strength of the beam allows for capturing metals from a distance of up to 120 mm. Thanks to this, magnetic beams are effective in metal separation in industries such as recycling, food processing, and plastic processing.
Their application allows for the effective removal of iron contaminants from transported materials, especially in industrial sectors requiring precise contaminant separation. Thanks to their design and strong neodymium magnets ensure high reliability and work efficiency. Additionally, the ability to customize the beam parameters to meet the specific requirements of the customer makes them a versatile solution for many industrial sectors.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their exceptional magnetic power, neodymium magnets offer the following advantages:

  • They virtually do not lose power, because even after ten years, the decline in efficiency is only ~1% (according to literature),
  • Their ability to resist magnetic interference from external fields is notable,
  • Because of the lustrous layer of nickel, the component looks aesthetically refined,
  • They exhibit superior levels of magnetic induction near the outer area of the magnet,
  • Neodymium magnets are known for exceptionally strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the magnetic form),
  • The ability for precise shaping and adaptation to individual needs – neodymium magnets can be manufactured in many forms and dimensions, which enhances their versatility in applications,
  • Key role in cutting-edge sectors – they are utilized in computer drives, rotating machines, diagnostic apparatus as well as other advanced devices,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, in miniature format,

Disadvantages of neodymium magnets:

  • They can break when subjected to a powerful impact. If the magnets are exposed to external force, we recommend in a steel housing. The steel housing, in the form of a holder, protects the magnet from fracture and additionally strengthens its overall strength,
  • High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Magnets exposed to wet conditions can corrode. Therefore, for outdoor applications, we suggest waterproof types made of coated materials,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing fine shapes directly in the magnet,
  • Possible threat related to magnet particles may arise, when consumed by mistake, which is crucial in the family environments. Moreover, miniature parts from these assemblies might complicate medical imaging after being swallowed,
  • High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which can restrict large-scale applications

Maximum holding power of the magnet – what contributes to it?

The given holding capacity of the magnet corresponds to the highest holding force, assessed in the best circumstances, that is:

  • with mild steel, serving as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a refined outer layer
  • with zero air gap
  • in a perpendicular direction of force
  • in normal thermal conditions

Impact of factors on magnetic holding capacity in practice

Practical lifting force is dependent on elements, by priority:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured using a polished steel plate of suitable thickness (min. 20 mm), under perpendicular pulling force, in contrast under attempts to slide the magnet the holding force is lower. Additionally, even a small distance {between} the magnet’s surface and the plate decreases the holding force.

Exercise Caution with Neodymium Magnets

Neodymium magnets can become demagnetized at high temperatures.

Despite the fact that magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can surprise you.

To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Never bring neodymium magnets close to a phone and GPS.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

  Magnets are not toys, children should not play with them.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Magnets made of neodymium are highly susceptible to damage, resulting in their cracking.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets will attract each other within a distance of several to around 10 cm from each other. Remember not to put fingers between magnets or alternatively in their path when attract. Depending on how massive the neodymium magnets are, they can lead to a cut or alternatively a fracture.

Keep neodymium magnets away from TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Caution!

So that know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous very strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98