tel: +48 888 99 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our store's offer. All "magnets" on our website are available for immediate purchase (see the list). See the magnet price list for more details see the magnet price list

Magnet for water searching F400 GOLD

Where to buy very strong magnet? Magnetic holders in airtight, solid steel enclosure are excellent for use in challenging weather, including in the rain and snow more information...

magnets with holders

Magnetic holders can be applied to enhance manufacturing, exploring underwater areas, or searching for space rocks made of metal see more...

We promise to ship your order on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

BM 700x180x75 [8xM10] - magnetic beam

magnetic beam

Catalog no 090472

GTIN: 5906301812616

5

length [±0,1 mm]

700 mm

Width [±0,1 mm]

180 mm

Height [±0,1 mm]

75 mm

Weight

35000 g

6150.00 with VAT / pcs + price for transport

5000.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
5000.00 ZŁ
6150.00 ZŁ
price from 5 pcs
4700.00 ZŁ
5781.00 ZŁ

Can't decide what to choose?

Call us now +48 888 99 98 98 alternatively drop us a message using inquiry form the contact page.
Weight along with appearance of magnets can be calculated on our modular calculator.

Orders submitted before 14:00 will be dispatched today!

BM 700x180x75 [8xM10] - magnetic beam

Specification/characteristics BM 700x180x75 [8xM10] - magnetic beam
properties
values
Cat. no.
090472
GTIN
5906301812616
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
700 mm [±0,1 mm]
Width
180 mm [±0,1 mm]
Height
75 mm [±0,1 mm]
Weight
35000 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material

properties
values
units

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Magnetic beams are components mounted above conveyor systems, which use neodymium magnets to separate iron contaminants from the transported material. Metallic elements float up and attach to the bottom surface of the beam. Magnetic beams are widely used in recycling, mineral raw materials and other industrial sectors.
The dimensions of the magnetic beam are tailored to the width of the belt and the magnetic field range. The larger the cross-section of the beam, the greater the magnetic field range. For instance, for loose materials with a depth of 2-3 cm, a beam with a cross-section of 80x40 mm will suffice, while for a layer of material over 8 cm, a larger beam is required. Custom-sized beams are available upon request.
The basis of the magnetic beam’s operation are strong neodymium magnets, which generate a magnetic field attracting metal elements. This causes all metals in the transport to be captured and stopped. The beam can be mounted above the conveyor or set at an angle as a chute separator. The stainless steel housing protects the magnets, ensuring long-lasting and effective operation in various industries.
These devices are used for removing any iron contaminants, such as metal balls, M5-M10 nuts, metal items, such as nails or keys. The range of the beam's action depends on its magnetic parameters and cross-section. These devices are indispensable in many industrial sectors where removing iron contaminants is critical.
Their application allows for the effective removal of iron contaminants from transported materials, which is crucial in industries such as food processing, recycling, plastic processing, and mineral raw materials. Equipped with neodymium magnets, these beams ensure high reliability and work efficiency. Additionally, the ability to customize the beam parameters to meet the specific requirements of the customer makes them a versatile solution for many industrial sectors.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their long-term stability, neodymium magnets provide the following advantages:

  • They retain their magnetic properties for nearly ten years – the drop is just ~1% (based on simulations),
  • They protect against demagnetization induced by ambient electromagnetic environments effectively,
  • Thanks to the shiny finish and silver coating, they have an elegant appearance,
  • They have extremely strong magnetic induction on the surface of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • With the option for tailored forming and personalized design, these magnets can be produced in numerous shapes and sizes, greatly improving engineering flexibility,
  • Significant impact in advanced technical fields – they find application in data storage devices, electric drives, diagnostic apparatus as well as other advanced devices,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of rare earth magnets:

  • They may fracture when subjected to a powerful impact. If the magnets are exposed to external force, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture and increases its overall durability,
  • Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a humid environment. For outdoor use, we recommend using encapsulated magnets, such as those made of non-metallic materials,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing complex structures directly in the magnet,
  • Possible threat linked to microscopic shards may arise, in case of ingestion, which is notable in the health of young users. Additionally, minuscule fragments from these products may hinder health screening once in the system,
  • Due to expensive raw materials, their cost is considerably higher,

Maximum holding power of the magnet – what contributes to it?

The given lifting capacity of the magnet corresponds to the maximum lifting force, assessed in ideal conditions, specifically:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • with a thickness of minimum 10 mm
  • with a polished side
  • in conditions of no clearance
  • with vertical force applied
  • at room temperature

Lifting capacity in real conditions – factors

In practice, the holding capacity of a magnet is affected by the following aspects, from crucial to less important:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, however under parallel forces the lifting capacity is smaller. Additionally, even a slight gap {between} the magnet’s surface and the plate reduces the lifting capacity.

Handle Neodymium Magnets with Caution

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnetic are particularly delicate, resulting in their breakage.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets are the strongest magnets ever created, and their strength can surprise you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

  Neodymium magnets should not be around children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can demagnetize at high temperatures.

Under specific conditions, Neodymium magnets may experience demagnetization when subjected to high temperatures.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Magnets will jump and contact together within a radius of several to almost 10 cm from each other.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Be careful!

To raise awareness of why neodymium magnets are so dangerous, see the article titled How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98