BM 700x180x75 [8xM10] - magnetic beam
magnetic beam
Catalog no 090472
GTIN: 5906301812616
length [±0,1 mm]
700 mm
Width [±0,1 mm]
180 mm
Height [±0,1 mm]
75 mm
Weight
35000 g
6150.00 ZŁ with VAT / pcs + price for transport
5000.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need help making a decision?
Call us
+48 888 99 98 98
or let us know through
request form
our website.
Weight along with form of a neodymium magnet can be verified on our
magnetic mass calculator.
Orders submitted before 14:00 will be dispatched today!
BM 700x180x75 [8xM10] - magnetic beam
Magnetic properties of material
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from their notable power, neodymium magnets have these key benefits:
- They virtually do not lose strength, because even after ten years, the decline in efficiency is only ~1% (in laboratory conditions),
- They are highly resistant to demagnetization caused by external magnetic sources,
- In other words, due to the glossy silver coating, the magnet obtains an professional appearance,
- Magnetic induction on the surface of these magnets is notably high,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- With the option for fine forming and personalized design, these magnets can be produced in various shapes and sizes, greatly improving engineering flexibility,
- Key role in new technology industries – they are used in hard drives, electromechanical systems, medical equipment or even technologically developed systems,
- Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in compact dimensions, which makes them ideal in miniature devices
Disadvantages of rare earth magnets:
- They can break when subjected to a strong impact. If the magnets are exposed to shocks, we recommend in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks , and at the same time strengthens its overall robustness,
- Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible power drop (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Magnets exposed to wet conditions can rust. Therefore, for outdoor applications, we suggest waterproof types made of plastic,
- The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is risky,
- Possible threat from tiny pieces may arise, if ingested accidentally, which is notable in the context of child safety. It should also be noted that small elements from these assemblies can interfere with diagnostics after being swallowed,
- High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications
Maximum lifting force for a neodymium magnet – what affects it?
The given holding capacity of the magnet means the highest holding force, measured in ideal conditions, that is:
- with mild steel, serving as a magnetic flux conductor
- with a thickness of minimum 10 mm
- with a polished side
- in conditions of no clearance
- in a perpendicular direction of force
- under standard ambient temperature
What influences lifting capacity in practice
In practice, the holding capacity of a magnet is conditioned by these factors, in descending order of importance:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was measured by applying a steel plate with a smooth surface of suitable thickness (min. 20 mm), under vertically applied force, in contrast under parallel forces the load capacity is reduced by as much as fivefold. Moreover, even a minimal clearance {between} the magnet and the plate decreases the holding force.
Handle Neodymium Magnets Carefully
Keep neodymium magnets away from the wallet, computer, and TV.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Neodymium magnets are especially delicate, resulting in damage.
Neodymium magnetic are highly fragile, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.
Neodymium magnets are the most powerful magnets ever created, and their power can surprise you.
Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.
Avoid bringing neodymium magnets close to a phone or GPS.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Neodymium magnets can demagnetize at high temperatures.
Despite the general resilience of magnets, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Neodymium magnets should not be around youngest children.
Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Avoid contact with neodymium magnets if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.
If have a finger between or on the path of attracting magnets, there may be a serious cut or a fracture.
Be careful!
So you are aware of why neodymium magnets are so dangerous, read the article titled How very dangerous are powerful neodymium magnets?.
