tel: +48 22 499 98 98

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our proposal. All "neodymium magnets" on our website are in stock for immediate delivery (see the list). See the magnet pricing for more details check the magnet price list

Magnet for water searching F400 GOLD

Where to buy strong magnet? Magnet holders in airtight, solid steel enclosure are excellent for use in difficult climate conditions, including snow and rain read...

magnetic holders

Holders with magnets can be applied to improve production, exploring underwater areas, or searching for meteors made of metal check...

Shipping always shipped on the same day by 2:00 PM on working days.

Dhit sp. z o.o.
Product available Ships in 3 days

BM 700x180x75 [8xM10] - magnetic beam

magnetic beam

Catalog no 090472

GTIN: 5906301812616

5

length [±0,1 mm]

700 mm

Width [±0,1 mm]

180 mm

Height [±0,1 mm]

75 mm

Weight

35000 g

6150.00 with VAT / pcs + price for transport

5000.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
5000.00 ZŁ
6150.00 ZŁ
price from 5 pcs
4700.00 ZŁ
5781.00 ZŁ

Not sure about your choice?

Call us +48 22 499 98 98 or drop us a message via inquiry form through our site.
Weight and shape of magnetic components can be tested using our online calculation tool.

Same-day shipping for orders placed before 14:00.

BM 700x180x75 [8xM10] - magnetic beam

Specification/characteristics BM 700x180x75 [8xM10] - magnetic beam
properties
values
Cat. no.
090472
GTIN
5906301812616
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
700 mm [±0,1 mm]
Width
180 mm [±0,1 mm]
Height
75 mm [±0,1 mm]
Weight
35000 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material

properties
values
units

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

It is a device used to catch metals from bulk materials. The most common installation place is suspended over the transport belt. It ensures the quality of the final product in recycling and food processing.
Ferrite is cheaper and has deeper field penetration. They work well for separation from a greater distance. Neodymium is unrivaled in catching fine filings and wires. The choice depends on the size of impurities and the thickness of the material layer.
The separator housing is high-quality stainless steel. Thanks to this, the device is waterproof and durable. It can be safely used in contact with food.
Removing impurities is simple but requires operator intervention. You should periodically wipe the working surface with a cloth or slide the collected metal to the side. Cleaning frequency depends on the amount of contamination in the product.
Yes, we are a manufacturer and we make separators to any size. We adjust the length, width, and spacing of mounting holes. Contact us for a quote.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their long-term stability, neodymium magnets provide the following advantages:

  • They virtually do not lose strength, because even after 10 years, the performance loss is only ~1% (in laboratory conditions),
  • They protect against demagnetization induced by ambient magnetic influence very well,
  • By applying a bright layer of silver, the element gains a sleek look,
  • Magnetic induction on the surface of these magnets is impressively powerful,
  • With the right combination of magnetic alloys, they reach significant thermal stability, enabling operation at or above 230°C (depending on the design),
  • The ability for custom shaping or adjustment to custom needs – neodymium magnets can be manufactured in multiple variants of geometries, which enhances their versatility in applications,
  • Significant impact in advanced technical fields – they are used in hard drives, electric drives, clinical machines or even high-tech tools,
  • Compactness – despite their small size, they generate strong force, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to shocks, they should be placed in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage and additionally reinforces its overall resistance,
  • Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is common to use sealed magnets made of synthetic coating for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing threads directly in the magnet,
  • Safety concern linked to microscopic shards may arise, especially if swallowed, which is important in the protection of children. Moreover, tiny components from these magnets may hinder health screening when ingested,
  • In cases of tight budgets, neodymium magnet cost is a challenge,

Maximum lifting force for a neodymium magnet – what affects it?

The given holding capacity of the magnet means the highest holding force, measured in ideal conditions, that is:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a refined outer layer
  • with no separation
  • in a perpendicular direction of force
  • at room temperature

Lifting capacity in practice – influencing factors

The lifting capacity of a magnet is influenced by in practice key elements, ordered from most important to least significant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, however under shearing force the lifting capacity is smaller. In addition, even a small distance {between} the magnet and the plate lowers the holding force.

Handle Neodymium Magnets with Caution

  Neodymium magnets should not be in the vicinity children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can shock you at first.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnetic are characterized by being fragile, which can cause them to shatter.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Neodymium magnets can demagnetize at high temperatures.

Despite the fact that magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Neodymium magnets jump and clash mutually within a radius of several to around 10 cm from each other.

Warning!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98