MW 22x10 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010046
GTIN: 5906301810452
Diameter Ø [±0,1 mm]
22 mm
Height [±0,1 mm]
10 mm
Weight
28.51 g
Magnetization Direction
↑ axial
Load capacity
12.16 kg / 119.25 N
Magnetic Induction
416.85 mT
Coating
[NiCuNi] nickel
11.30 ZŁ with VAT / pcs + price for transport
9.19 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Can't decide what to choose?
Give us a call
+48 888 99 98 98
otherwise drop us a message via
contact form
through our site.
Force along with appearance of a magnet can be tested with our
our magnetic calculator.
Orders placed before 14:00 will be shipped the same business day.
MW 22x10 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, even though neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a thin layer of nickel to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.
In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, as well as in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often coated with coatings, such as epoxy, to protect them from external factors and prolong their durability. High temperatures exceeding 130°C can cause a deterioration of their magnetic strength, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic strength.
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from their consistent holding force, neodymium magnets have these key benefits:
- They retain their full power for almost ten years – the drop is just ~1% (based on simulations),
- They protect against demagnetization induced by external magnetic influence remarkably well,
- In other words, due to the glossy silver coating, the magnet obtains an aesthetic appearance,
- They have very high magnetic induction on the surface of the magnet,
- With the right combination of materials, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the structure),
- The ability for precise shaping as well as adaptation to specific needs – neodymium magnets can be manufactured in multiple variants of geometries, which amplifies their functionality across industries,
- Key role in cutting-edge sectors – they are used in computer drives, rotating machines, healthcare devices or even technologically developed systems,
- Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications
Disadvantages of magnetic elements:
- They are fragile when subjected to a sudden impact. If the magnets are exposed to mechanical hits, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks and reinforces its overall robustness,
- They lose power at elevated temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of plastic for outdoor use,
- The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is risky,
- Potential hazard from tiny pieces may arise, if ingested accidentally, which is notable in the protection of children. Moreover, small elements from these magnets may disrupt scanning when ingested,
- High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications
Maximum lifting capacity of the magnet – what contributes to it?
The given strength of the magnet corresponds to the optimal strength, measured under optimal conditions, that is:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a polished side
- with zero air gap
- in a perpendicular direction of force
- at room temperature
Lifting capacity in real conditions – factors
Practical lifting force is dependent on factors, by priority:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was assessed using a smooth steel plate of optimal thickness (min. 20 mm), under perpendicular detachment force, however under parallel forces the holding force is lower. Moreover, even a minimal clearance {between} the magnet’s surface and the plate decreases the holding force.
Handle Neodymium Magnets Carefully
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Magnets made of neodymium are incredibly fragile, they easily fall apart as well as can become damaged.
Neodymium magnetic are delicate as well as will shatter if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.
Neodymium magnets are among the strongest magnets on Earth. The astonishing force they generate between each other can surprise you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Magnets are not toys, youngest should not play with them.
Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Keep neodymium magnets away from TV, wallet, and computer HDD.
Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Neodymium magnets can demagnetize at high temperatures.
Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.
Keep neodymium magnets away from GPS and smartphones.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.
Magnets will bounce and also contact together within a distance of several to around 10 cm from each other.
Caution!
In order for you to know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous powerful neodymium magnets.
