e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnets Nd2Fe14B - our store's offer. All "neodymium magnets" on our website are in stock for immediate delivery (see the list). Check out the magnet pricing for more details check the magnet price list

Magnet for treasure hunters F400 GOLD

Where to buy strong magnet? Magnetic holders in airtight and durable steel enclosure are ideally suited for use in challenging weather, including during rain and snow more information...

magnetic holders

Magnetic holders can be applied to enhance production, exploring underwater areas, or finding meteorites made of ore more...

Shipping always shipped on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping in 3 days!

MW 22x10 / N38 - neodymium magnet

cylindrical magnet

catalog number 010046

GTIN: 5906301810452

no reviews

diameter Ø

22 mm [±0,1 mm]

height

10 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

12.16 kg / 119.25 N

magnetic induction ~

416.85 mT / 4,168 Gs

max. temperature

≤ 80 °C

7.48 gross price (including VAT) / pcs +

6.08 ZŁ net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
6.08 ZŁ
7.48 ZŁ
price from 99 pcs
5.72 ZŁ
7.04 ZŁ
price from 362 pcs
5.35 ZŁ
6.58 ZŁ

Want to talk about magnets?

Give us a call tel: +48 888 99 98 98 or get in touch via form on our website. You can check the mass and the appearance of neodymium magnets in our magnetic calculator magnetic calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 22x10 / N38 ↑ axial

Characteristics: cylindrical magnet 22x10 / N38 ↑ axial
Properties
Values
catalog number
010046
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
22 mm [±0,1 mm]
height
10 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
12.16 kg / 119.25 N
magnetic induction ~ ?
416.85 mT / 4,168 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
28.51 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Neodymium Cylindrical Magnets i.e. MW 22x10 / N38 are magnets made of neodymium in a cylindrical shape. They are known for their very strong magnetic properties, which exceed ordinary iron magnets. Thanks to their strength, they are frequently used in products that require powerful holding. The standard temperature resistance of these magnets is 80 degrees C, but for cylindrical magnets, this temperature rises with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their durability to corrosion. The shape of a cylinder is as well very popular among neodymium magnets. The magnet designated MW 22x10 / N38 and a magnetic force 12.16 kg weighs only 28.51 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, represent the strongest known material for magnet production. The technology of their production is complicated and includes melting special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in many applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a thin layer of epoxy to increase their durability. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of purchasing of cylindrical neodymium magnets, several enterprises offer such products. One of the suggested suppliers is our company Dhit, located in Ożarów Mazowiecki, the address is available directly in the contact tab. It's always worth check the website for the latest information and offers, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are practical in various applications, they can also constitute certain risk. Due to their significant magnetic power, they can pull metallic objects with significant force, which can lead to damaging skin and other surfaces, especially hands. Do not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin protective layer. Generally, although they are handy, one should handle them with due caution.
Neodymium magnets, with the formula neodymium-iron-boron, are at this time the strongest available magnets on the market. They are produced through a complicated sintering process, which involves fusing special alloys of neodymium with additional metals and then shaping and thermal processing. Their powerful magnetic strength comes from the specific production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often coated with coatings, such as silver, to protect them from external factors and prolong their durability. High temperatures exceeding 130°C can result in a deterioration of their magnetic strength, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may lose their magnetic strength.

Shopping tips

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to immense power, neodymium magnets have the following advantages:

  • They do not lose their power (of the magnet). After about 10 years, their power decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic field,
  • In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
  • They have exceptionally high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C and above...
  • The ability for precise shaping and customization to specific needs – neodymium magnets can be produced in various forms and dimensions, which amplifies their universality in usage.
  • Significant importance in the industry of new technologies – are utilized in hard drives, electric drive mechanisms, medical devices or other highly developed apparatuses.

Disadvantages of neodymium magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • High temperatures can reduce the strength of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent reduction in strength (although it is dependent on the shape and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
  • Due to their susceptibility to corrosion in a humid environment, we recommend using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • Limited ability to create threads or complex shapes in the magnet - the use of a housing is recommended - magnetic holder
  • Health risk arising from small pieces of magnets pose a threat, if swallowed, which becomes significant in the context of children's health. Additionally, tiny parts of these devices have the potential to hinder the diagnostic process when they are in the body.

Handle Neodymium Magnets Carefully

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are not recommended for people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

  Neodymium magnets should not be in the vicinity children.

Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their power can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Neodymium magnets generate intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Neodymium magnets bounce and also touch each other mutually within a distance of several to around 10 cm from each other.

Neodymium magnets are highly susceptible to damage, resulting in their cracking.

Magnets made of neodymium are extremely fragile, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

In order for you to know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98