tel: +48 22 499 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our store's offer. All magnesy neodymowe in our store are in stock for immediate delivery (check the list). Check out the magnet pricing for more details see the magnet price list

Magnets for fishing F200 GOLD

Where to buy very strong neodymium magnet? Holders with magnets in solid and airtight steel casing are excellent for use in variable and difficult climate conditions, including snow and rain read...

magnets with holders

Holders with magnets can be applied to improve production processes, exploring underwater areas, or finding meteors from gold check...

We promise to ship ordered magnets on the day of purchase before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 20x35 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010043

GTIN: 5906301810421

5

Diameter Ø [±0,1 mm]

20 mm

Height [±0,1 mm]

35 mm

Weight

82.47 g

Magnetization Direction

↑ axial

Load capacity

38.71 kg / 379.62 N

Magnetic Induction

595.77 mT

Coating

[NiCuNi] nickel

49.52 with VAT / pcs + price for transport

40.26 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
40.26 ZŁ
49.52 ZŁ
price from 20 pcs
37.84 ZŁ
46.54 ZŁ
price from 70 pcs
35.03 ZŁ
43.09 ZŁ

Hunting for a discount?

Call us +48 22 499 98 98 if you prefer drop us a message via form our website.
Strength and appearance of a magnet can be analyzed on our magnetic mass calculator.

Same-day shipping for orders placed before 14:00.

MW 20x35 / N38 - cylindrical magnet

Specification/characteristics MW 20x35 / N38 - cylindrical magnet
properties
values
Cat. no.
010043
GTIN
5906301810421
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
20 mm [±0,1 mm]
Height
35 mm [±0,1 mm]
Weight
82.47 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
38.71 kg / 379.62 N
Magnetic Induction ~ ?
595.77 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets i.e. MW 20x35 / N38 are magnets created of neodymium in a cylindrical shape. They are valued for their very strong magnetic properties, which outperform ordinary iron magnets. Thanks to their strength, they are frequently employed in products that need powerful holding. The standard temperature resistance of these magnets is 80°C, but for cylindrical magnets, this temperature increases with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to enhance their durability to corrosion. The shape of a cylinder is as well very popular among neodymium magnets. The magnet named MW 20x35 / N38 and a magnetic force 38.71 kg has a weight of only 82.47 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, are the strongest known material for magnet production. Their production process requires a specialized approach and includes melting special neodymium alloys with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in varied applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a thin layer of nickel to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, as well as in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, located in Ożarów Mazowiecki, the address is available directly in the contact tab. It's always worth check the website for the latest information as well as promotions, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are very useful in many applications, they can also pose certain dangers. Because of their strong magnetic power, they can pull metallic objects with great force, which can lead to damaging skin as well as other materials, especially be careful with fingers. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. Generally, although they are handy, one should handle them with due caution.
Neodymium magnets, with the formula Nd2Fe14B, are presently the very strong magnets on the market. They are produced through a advanced sintering process, which involves melting special alloys of neodymium with other metals and then forming and heat treating. Their amazing magnetic strength comes from the specific production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often coated with coatings, such as epoxy, to protect them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can cause a reduction of their magnetic properties, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may forfeit their magnetic strength.
A cylindrical neodymium magnet N50 and N52 is a powerful and strong magnetic product designed as a cylinder, featuring high force and broad usability. Good price, availability, resistance and universal usability.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their long-term stability, neodymium magnets provide the following advantages:

  • They virtually do not lose power, because even after 10 years, the performance loss is only ~1% (in laboratory conditions),
  • They are very resistant to demagnetization caused by external magnetic sources,
  • By applying a reflective layer of silver, the element gains a sleek look,
  • They have very high magnetic induction on the surface of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • Thanks to the possibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in diverse shapes and sizes, which broadens their functional possibilities,
  • Key role in advanced technical fields – they serve a purpose in HDDs, electric drives, clinical machines along with technologically developed systems,
  • Thanks to their power density, small magnets offer high magnetic performance, in miniature format,

Disadvantages of NdFeB magnets:

  • They are prone to breaking when subjected to a powerful impact. If the magnets are exposed to mechanical hits, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks , and at the same time enhances its overall resistance,
  • Magnets lose magnetic efficiency when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a damp environment. If exposed to rain, we recommend using moisture-resistant magnets, such as those made of polymer,
  • Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing threads directly in the magnet,
  • Health risk related to magnet particles may arise, if ingested accidentally, which is crucial in the context of child safety. Furthermore, tiny components from these assemblies may complicate medical imaging once in the system,
  • High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications

Magnetic strength at its maximum – what affects it?

The given lifting capacity of the magnet means the maximum lifting force, measured in the best circumstances, specifically:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • in conditions of no clearance
  • under perpendicular detachment force
  • in normal thermal conditions

Lifting capacity in real conditions – factors

Practical lifting force is determined by elements, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured with the use of a polished steel plate of optimal thickness (min. 20 mm), under perpendicular pulling force, whereas under parallel forces the lifting capacity is smaller. Moreover, even a minimal clearance {between} the magnet and the plate lowers the holding force.

Caution with Neodymium Magnets

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnetic are incredibly fragile, they easily break and can crumble.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.

Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Neodymium magnets bounce and also touch each other mutually within a radius of several to around 10 cm from each other.

Neodymium magnets are not recommended for people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can surprise you at first.

Familiarize yourself with our information to correctly handle these magnets and avoid significant swellings to your body and prevent disruption to the magnets.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

 It is important to keep neodymium magnets away from youngest children.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Neodymium magnets can demagnetize at high temperatures.

Despite the fact that magnets have been found to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Warning!

In order to illustrate why neodymium magnets are so dangerous, read the article - How dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98