e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our store's offer. Practically all magnesy neodymowe in our store are in stock for immediate delivery (see the list). See the magnet price list for more details see the magnet price list

Magnet for water searching F200 GOLD

Where to purchase powerful neodymium magnet? Magnet holders in airtight and durable enclosure are excellent for use in difficult climate conditions, including snow and rain see...

magnets with holders

Magnetic holders can be used to enhance production processes, exploring underwater areas, or searching for meteors made of ore read...

We promise to ship ordered magnets if the order is placed before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 20x35 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010043

GTIN: 5906301810421

5

Diameter Ø [±0,1 mm]

20 mm

Height [±0,1 mm]

35 mm

Weight

82.47 g

Magnetization Direction

↑ axial

Load capacity

38.71 kg / 379.62 N

Magnetic Induction

595.77 mT

Coating

[NiCuNi] nickel

49.52 with VAT / pcs + price for transport

40.26 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
40.26 ZŁ
49.52 ZŁ
price from 20 pcs
37.84 ZŁ
46.55 ZŁ
price from 70 pcs
35.43 ZŁ
43.58 ZŁ

Need advice?

Call us +48 22 499 98 98 alternatively send us a note via form through our site.
Parameters and form of magnetic components can be checked on our power calculator.

Order by 14:00 and we’ll ship today!

MW 20x35 / N38 - cylindrical magnet

Specification/characteristics MW 20x35 / N38 - cylindrical magnet
properties
values
Cat. no.
010043
GTIN
5906301810421
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
20 mm [±0,1 mm]
Height
35 mm [±0,1 mm]
Weight
82.47 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
38.71 kg / 379.62 N
Magnetic Induction ~ ?
595.77 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets i.e. MW 20x35 / N38 are magnets created of neodymium in a cylinder form. They are known for their very strong magnetic properties, which outperform ordinary ferrite magnets. Thanks to their strength, they are frequently employed in products that need strong adhesion. The standard temperature resistance of such magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature rises with their height. Moreover, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to enhance their durability to corrosion. The cylindrical shape is also one of the most popular among neodymium magnets. The magnet designated MW 20x35 / N38 with a magnetic force 38.71 kg has a weight of only 82.47 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, represent the strongest known material for magnet production. The technology of their production requires a specialized approach and includes sintering special neodymium alloys with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets are made available for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a coating of nickel to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
Regarding the purchase of cylindrical neodymium magnets, several enterprises offer such products. One of the suggested suppliers is our company Dhit, located in Ożarów Mazowiecki, the address can be found directly in the contact tab. It's always worth visit the website for the latest information and promotions, and before visiting, we recommend calling.
Due to their strength, cylindrical neodymium magnets are very practical in various applications, they can also constitute certain risk. Because of their significant magnetic power, they can pull metallic objects with great force, which can lead to crushing skin or other materials, especially fingers. Do not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Moreover, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin e.g., nickel layer. Generally, although they are very useful, they should be handled with due caution.
Neodymium magnets, with the formula neodymium-iron-boron, are at this time the strong magnets on the market. They are produced through a advanced sintering process, which involves melting specific alloys of neodymium with other metals and then forming and thermal processing. Their amazing magnetic strength comes from the exceptional production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often coated with coatings, such as nickel, to shield them from external factors and extend their lifespan. High temperatures exceeding 130°C can result in a reduction of their magnetic strength, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic strength.
A neodymium magnet N52 and N50 is a powerful and strong metallic component designed as a cylinder, featuring high force and broad usability. Competitive price, availability, stability and universal usability.

Advantages and disadvantages of neodymium magnets NdFeB.

Besides their magnetic performance, neodymium magnets are valued for these benefits:

  • They do not lose their magnetism, even after approximately ten years – the reduction of lifting capacity is only ~1% (according to tests),
  • They show superior resistance to demagnetization from outside magnetic sources,
  • The use of a polished gold surface provides a refined finish,
  • Magnetic induction on the surface of these magnets is impressively powerful,
  • These magnets tolerate high temperatures, often exceeding 230°C, when properly designed (in relation to form),
  • With the option for customized forming and targeted design, these magnets can be produced in numerous shapes and sizes, greatly improving engineering flexibility,
  • Significant impact in cutting-edge sectors – they find application in computer drives, electromechanical systems, healthcare devices or even other advanced devices,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in compact dimensions, which makes them ideal in small systems

Disadvantages of rare earth magnets:

  • They can break when subjected to a sudden impact. If the magnets are exposed to mechanical hits, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time increases its overall strength,
  • They lose strength at high temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the geometry and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • They rust in a damp environment, especially when used outside, we recommend using moisture-resistant magnets, such as those made of rubber,
  • Limited ability to create internal holes in the magnet – the use of a external casing is recommended,
  • Possible threat from tiny pieces may arise, when consumed by mistake, which is notable in the protection of children. It should also be noted that miniature parts from these magnets might complicate medical imaging if inside the body,
  • In cases of large-volume purchasing, neodymium magnet cost may be a barrier,

Breakaway strength of the magnet in ideal conditionswhat contributes to it?

The given lifting capacity of the magnet corresponds to the maximum lifting force, measured in ideal conditions, that is:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a polished side
  • with zero air gap
  • in a perpendicular direction of force
  • in normal thermal conditions

What influences lifting capacity in practice

Practical lifting force is dependent on elements, by priority:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured by applying a polished steel plate of suitable thickness (min. 20 mm), under perpendicular detachment force, however under attempts to slide the magnet the lifting capacity is smaller. Additionally, even a minimal clearance {between} the magnet’s surface and the plate lowers the holding force.

Handle Neodymium Magnets with Caution

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

 It is essential to maintain neodymium magnets away from children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnets can demagnetize at high temperatures.

Under specific conditions, Neodymium magnets may experience demagnetization when subjected to high temperatures.

Neodymium magnetic are highly fragile, they easily crack and can become damaged.

Magnets made of neodymium are fragile and will break if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Do not bring neodymium magnets close to GPS and smartphones.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are among the strongest magnets on Earth. The astonishing force they generate between each other can shock you.

Familiarize yourself with our information to properly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets will crack or crumble with careless joining to each other. Remember not to move them to each other or hold them firmly in hands at a distance less than 10 cm.

Pay attention!

In order for you to know how strong neodymium magnets are and why they are so dangerous, see the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98