Neodymium magnets: strength you're looking for

Want to buy really powerful magnets? We have in stock wide selection of disc, cylindrical and ring magnets. Best choice for domestic applications, garage and model making. See products in stock.

discover magnet catalog

Magnets for underwater searches

Discover your passion related to seabed exploration! Our double-handle grips (F200, F400) provide grip certainty and immense power. Stainless steel construction and strong lines will perform in rivers and lakes.

choose searching equipment

Magnetic solutions for business

Reliable solutions for mounting non-invasive. Threaded mounts (M8, M10, M12) guarantee instant organization of work on warehouses. Perfect for installing lighting, sensors and ads.

check industrial applications

📦 Fast shipping: buy by 14:00, package goes out today!

Dhit sp. z o.o.
Product available Ships today (order by 14:00)

MPL 5x5x1.2 / N38 - lamellar magnet

lamellar magnet

Catalog no 020171

GTIN/EAN: 5906301811770

5.00

length

5 mm [±0,1 mm]

Width

5 mm [±0,1 mm]

Height

1.2 mm [±0,1 mm]

Weight

0.22 g

Magnetization Direction

↑ axial

Load capacity

0.44 kg / 4.28 N

Magnetic Induction

245.17 mT / 2452 Gs

Coating

[NiCuNi] Nickel

0.1845 with VAT / pcs + price for transport

0.1500 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.1500 ZŁ
0.1845 ZŁ
price from 4000 pcs
0.1410 ZŁ
0.1734 ZŁ
price from 17000 pcs
0.1320 ZŁ
0.1624 ZŁ
Want to talk magnets?

Call us now +48 888 99 98 98 if you prefer contact us by means of request form our website.
Weight and form of a magnet can be reviewed with our magnetic mass calculator.

Orders placed before 14:00 will be shipped the same business day.

Technical data - MPL 5x5x1.2 / N38 - lamellar magnet

Specification / characteristics - MPL 5x5x1.2 / N38 - lamellar magnet

properties
properties values
Cat. no. 020171
GTIN/EAN 5906301811770
Production/Distribution Dhit sp. z o.o.
ul. Zielona 14 05-850 Ożarów Mazowiecki PL
Country of origin Poland / China / Germany
Customs code 85059029
length 5 mm [±0,1 mm]
Width 5 mm [±0,1 mm]
Height 1.2 mm [±0,1 mm]
Weight 0.22 g
Magnetization Direction ↑ axial
Load capacity ~ ? 0.44 kg / 4.28 N
Magnetic Induction ~ ? 245.17 mT / 2452 Gs
Coating [NiCuNi] Nickel
Manufacturing Tolerance ±0.1 mm

Magnetic properties of material N38

Specification / characteristics MPL 5x5x1.2 / N38 - lamellar magnet
properties values units
remenance Br [min. - max.] ? 12.2-12.6 kGs
remenance Br [min. - max.] ? 1220-1260 mT
coercivity bHc ? 10.8-11.5 kOe
coercivity bHc ? 860-915 kA/m
actual internal force iHc ≥ 12 kOe
actual internal force iHc ≥ 955 kA/m
energy density [min. - max.] ? 36-38 BH max MGOe
energy density [min. - max.] ? 287-303 BH max KJ/m
max. temperature ? ≤ 80 °C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C

Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
properties values units
Vickers hardness ≥550 Hv
Density ≥7.4 g/cm3
Curie Temperature TC 312 - 380 °C
Curie Temperature TF 593 - 716 °F
Specific resistance 150 μΩ⋅cm
Bending strength 250 MPa
Compressive strength 1000~1100 MPa
Thermal expansion parallel (∥) to orientation (M) (3-4) x 10-6 °C-1
Thermal expansion perpendicular (⊥) to orientation (M) -(1-3) x 10-6 °C-1
Young's modulus 1.7 x 104 kg/mm²

Engineering simulation of the product - technical parameters

Presented information constitute the direct effect of a mathematical analysis. Results are based on models for the material Nd2Fe14B. Real-world conditions might slightly differ from theoretical values. Please consider these data as a supplementary guide when designing systems.

Table 1: Static force (force vs gap) - characteristics
MPL 5x5x1.2 / N38

Distance (mm) Induction (Gauss) / mT Pull Force (kg/lbs/g/N) Risk Status
0 mm 2450 Gs
245.0 mT
0.44 kg / 0.97 LBS
440.0 g / 4.3 N
safe
1 mm 1739 Gs
173.9 mT
0.22 kg / 0.49 LBS
221.8 g / 2.2 N
safe
2 mm 1054 Gs
105.4 mT
0.08 kg / 0.18 LBS
81.4 g / 0.8 N
safe
3 mm 622 Gs
62.2 mT
0.03 kg / 0.06 LBS
28.4 g / 0.3 N
safe
5 mm 241 Gs
24.1 mT
0.00 kg / 0.01 LBS
4.3 g / 0.0 N
safe
10 mm 45 Gs
4.5 mT
0.00 kg / 0.00 LBS
0.1 g / 0.0 N
safe
15 mm 15 Gs
1.5 mT
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
safe
20 mm 7 Gs
0.7 mT
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
safe
30 mm 2 Gs
0.2 mT
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
safe
50 mm 0 Gs
0.0 mT
0.00 kg / 0.00 LBS
0.0 g / 0.0 N
safe

Table 2: Vertical load (vertical surface)
MPL 5x5x1.2 / N38

Distance (mm) Friction coefficient Pull Force (kg/lbs/g/N)
0 mm Stal (~0.2) 0.09 kg / 0.19 LBS
88.0 g / 0.9 N
1 mm Stal (~0.2) 0.04 kg / 0.10 LBS
44.0 g / 0.4 N
2 mm Stal (~0.2) 0.02 kg / 0.04 LBS
16.0 g / 0.2 N
3 mm Stal (~0.2) 0.01 kg / 0.01 LBS
6.0 g / 0.1 N
5 mm Stal (~0.2) 0.00 kg / 0.00 LBS
0.0 g / 0.0 N
10 mm Stal (~0.2) 0.00 kg / 0.00 LBS
0.0 g / 0.0 N
15 mm Stal (~0.2) 0.00 kg / 0.00 LBS
0.0 g / 0.0 N
20 mm Stal (~0.2) 0.00 kg / 0.00 LBS
0.0 g / 0.0 N
30 mm Stal (~0.2) 0.00 kg / 0.00 LBS
0.0 g / 0.0 N
50 mm Stal (~0.2) 0.00 kg / 0.00 LBS
0.0 g / 0.0 N

Table 3: Vertical assembly (sliding) - vertical pull
MPL 5x5x1.2 / N38

Surface type Friction coefficient / % Mocy Max load (kg/lbs/g/N)
Raw steel
µ = 0.3 30% Nominalnej Siły
0.13 kg / 0.29 LBS
132.0 g / 1.3 N
Painted steel (standard)
µ = 0.2 20% Nominalnej Siły
0.09 kg / 0.19 LBS
88.0 g / 0.9 N
Oily/slippery steel
µ = 0.1 10% Nominalnej Siły
0.04 kg / 0.10 LBS
44.0 g / 0.4 N
Magnet with anti-slip rubber
µ = 0.5 50% Nominalnej Siły
0.22 kg / 0.49 LBS
220.0 g / 2.2 N

Table 4: Steel thickness (substrate influence) - sheet metal selection
MPL 5x5x1.2 / N38

Steel thickness (mm) % power Real pull force (kg/lbs/g/N)
0.5 mm
10%
0.04 kg / 0.10 LBS
44.0 g / 0.4 N
1 mm
25%
0.11 kg / 0.24 LBS
110.0 g / 1.1 N
2 mm
50%
0.22 kg / 0.49 LBS
220.0 g / 2.2 N
3 mm
75%
0.33 kg / 0.73 LBS
330.0 g / 3.2 N
5 mm
100%
0.44 kg / 0.97 LBS
440.0 g / 4.3 N
10 mm
100%
0.44 kg / 0.97 LBS
440.0 g / 4.3 N
11 mm
100%
0.44 kg / 0.97 LBS
440.0 g / 4.3 N
12 mm
100%
0.44 kg / 0.97 LBS
440.0 g / 4.3 N

Table 5: Thermal resistance (stability) - thermal limit
MPL 5x5x1.2 / N38

Ambient temp. (°C) Power loss Remaining pull (kg/lbs/g/N) Status
20 °C 0.0% 0.44 kg / 0.97 LBS
440.0 g / 4.3 N
OK
40 °C -2.2% 0.43 kg / 0.95 LBS
430.3 g / 4.2 N
OK
60 °C -4.4% 0.42 kg / 0.93 LBS
420.6 g / 4.1 N
80 °C -6.6% 0.41 kg / 0.91 LBS
411.0 g / 4.0 N
100 °C -28.8% 0.31 kg / 0.69 LBS
313.3 g / 3.1 N

Table 6: Magnet-Magnet interaction (repulsion) - forces in the system
MPL 5x5x1.2 / N38

Gap (mm) Attraction (kg/lbs) (N-S) Sliding Force (kg/lbs/g/N) Repulsion (kg/lbs) (N-N)
0 mm 0.92 kg / 2.04 LBS
4 027 Gs
0.14 kg / 0.31 LBS
139 g / 1.4 N
N/A
1 mm 0.70 kg / 1.54 LBS
4 260 Gs
0.10 kg / 0.23 LBS
105 g / 1.0 N
0.63 kg / 1.39 LBS
~0 Gs
2 mm 0.47 kg / 1.03 LBS
3 478 Gs
0.07 kg / 0.15 LBS
70 g / 0.7 N
0.42 kg / 0.93 LBS
~0 Gs
3 mm 0.29 kg / 0.63 LBS
2 734 Gs
0.04 kg / 0.10 LBS
43 g / 0.4 N
0.26 kg / 0.57 LBS
~0 Gs
5 mm 0.10 kg / 0.22 LBS
1 617 Gs
0.02 kg / 0.03 LBS
15 g / 0.1 N
0.09 kg / 0.20 LBS
~0 Gs
10 mm 0.01 kg / 0.02 LBS
482 Gs
0.00 kg / 0.00 LBS
1 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
20 mm 0.00 kg / 0.00 LBS
90 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
50 mm 0.00 kg / 0.00 LBS
7 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
60 mm 0.00 kg / 0.00 LBS
4 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
70 mm 0.00 kg / 0.00 LBS
3 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
80 mm 0.00 kg / 0.00 LBS
2 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
90 mm 0.00 kg / 0.00 LBS
1 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs
100 mm 0.00 kg / 0.00 LBS
1 Gs
0.00 kg / 0.00 LBS
0 g / 0.0 N
0.00 kg / 0.00 LBS
~0 Gs

Table 7: Safety (HSE) (electronics) - warnings
MPL 5x5x1.2 / N38

Object / Device Limit (Gauss) / mT Safe distance
Pacemaker 5 Gs (0.5 mT) 2.5 cm
Hearing aid 10 Gs (1.0 mT) 2.0 cm
Mechanical watch 20 Gs (2.0 mT) 1.5 cm
Phone / Smartphone 40 Gs (4.0 mT) 1.5 cm
Car key 50 Gs (5.0 mT) 1.0 cm
Payment card 400 Gs (40.0 mT) 0.5 cm
HDD hard drive 600 Gs (60.0 mT) 0.5 cm

Table 8: Dynamics (kinetic energy) - collision effects
MPL 5x5x1.2 / N38

Start from (mm) Speed (km/h) Energy (J) Predicted outcome
10 mm 45.11 km/h
(12.53 m/s)
0.02 J
30 mm 78.12 km/h
(21.70 m/s)
0.05 J
50 mm 100.85 km/h
(28.01 m/s)
0.09 J
100 mm 142.63 km/h
(39.62 m/s)
0.17 J

Table 9: Surface protection spec
MPL 5x5x1.2 / N38

Technical parameter Value / Description
Coating type [NiCuNi] Nickel
Layer structure Nickel - Copper - Nickel
Layer thickness 10-20 µm
Salt spray test (SST) ? 24 h
Recommended environment Indoors only (dry)

Table 10: Electrical data (Flux)
MPL 5x5x1.2 / N38

Parameter Value SI Unit / Description
Magnetic Flux 695 Mx 7.0 µWb
Pc Coefficient 0.30 Low (Flat)

Table 11: Hydrostatics and buoyancy
MPL 5x5x1.2 / N38

Environment Effective steel pull Effect
Air (land) 0.44 kg Standard
Water (riverbed) 0.50 kg
(+0.06 kg buoyancy gain)
+14.5%
Warning: Remember to wipe the magnet thoroughly after removing it from water and apply a protective layer (e.g., oil) to avoid corrosion.
1. Sliding resistance

*Warning: On a vertical surface, the magnet holds just approx. 20-30% of its max power.

2. Plate thickness effect

*Thin steel (e.g. computer case) severely weakens the holding force.

3. Thermal stability

*For N38 grade, the max working temp is 80°C.

4. Demagnetization curve and operating point (B-H)

chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.30

The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.

Engineering data and GPSR
Material specification
iron (Fe) 64% – 68%
neodymium (Nd) 29% – 32%
boron (B) 1.1% – 1.2%
dysprosium (Dy) 0.5% – 2.0%
coating (Ni-Cu-Ni) < 0.05%
Ecology and recycling (GPSR)
recyclability (EoL) 100%
recycled raw materials ~10% (pre-cons)
carbon footprint low / zredukowany
waste code (EWC) 16 02 16
Safety card (GPSR)
responsible entity
Dhit sp. z o.o.
ul. Kościuszki 6A, 05-850 Ożarów Mazowiecki
tel: +48 22 499 98 98 | e-mail: bok@dhit.pl
batch number/type
id: 020171-2026
Magnet Unit Converter
Magnet pull force

Field Strength

Other deals

Component MPL 5x5x1.2 / N38 features a low profile and industrial pulling force, making it an ideal solution for building separators and machines. As a block magnet with high power (approx. 0.44 kg), this product is available off-the-shelf from our warehouse in Poland. The durable anti-corrosion layer ensures a long lifespan in a dry environment, protecting the core from oxidation.
The key to success is shifting the magnets along their largest connection plane (using e.g., the edge of a table), which is easier than trying to tear them apart directly. To separate the MPL 5x5x1.2 / N38 model, firmly slide one magnet over the edge of the other until the attraction force decreases. We recommend care, because after separation, the magnets may want to violently snap back together, which threatens pinching the skin. Never use metal tools for prying, as the brittle NdFeB material may chip and damage your eyes.
They constitute a key element in the production of generators and material handling systems. Thanks to the flat surface and high force (approx. 0.44 kg), they are ideal as hidden locks in furniture making and mounting elements in automation. Their rectangular shape facilitates precise gluing into milled sockets in wood or plastic.
For mounting flat magnets MPL 5x5x1.2 / N38, we recommend utilizing strong epoxy glues (e.g., UHU Endfest, Distal), which ensure a durable bond with metal or plastic. For lighter applications or mounting on smooth surfaces, branded foam tape (e.g., 3M VHB) will work, provided the surface is perfectly degreased. Avoid chemically aggressive glues or hot glue, which can demagnetize neodymium (above 80°C).
Standardly, the MPL 5x5x1.2 / N38 model is magnetized axially (dimension 1.2 mm), which means that the N and S poles are located on its largest, flat surfaces. In practice, this means that this magnet has the greatest attraction force on its main planes (5x5 mm), which is ideal for flat mounting. This is the most popular configuration for block magnets used in separators and holders.
This model is characterized by dimensions 5x5x1.2 mm, which, at a weight of 0.22 g, makes it an element with high energy density. It is a magnetic block with dimensions 5x5x1.2 mm and a self-weight of 0.22 g, ready to work at temperatures up to 80°C. The protective [NiCuNi] coating secures the magnet against corrosion.

Pros and cons of Nd2Fe14B magnets.

Pros

Besides their high retention, neodymium magnets are valued for these benefits:
  • They virtually do not lose power, because even after ten years the decline in efficiency is only ~1% (according to literature),
  • Neodymium magnets are distinguished by extremely resistant to magnetic field loss caused by external field sources,
  • The use of an shiny layer of noble metals (nickel, gold, silver) causes the element to be more visually attractive,
  • Magnetic induction on the working part of the magnet is impressive,
  • Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their shape) at temperatures up to 230°C and above...
  • Thanks to the potential of accurate forming and customization to specialized needs, neodymium magnets can be produced in a variety of geometric configurations, which expands the range of possible applications,
  • Fundamental importance in innovative solutions – they are commonly used in mass storage devices, brushless drives, medical devices, and modern systems.
  • Compactness – despite small sizes they offer powerful magnetic field, making them ideal for precision applications

Weaknesses

Characteristics of disadvantages of neodymium magnets and ways of using them
  • To avoid cracks upon strong impacts, we suggest using special steel housings. Such a solution secures the magnet and simultaneously increases its durability.
  • When exposed to high temperature, neodymium magnets suffer a drop in force. Often, when the temperature exceeds 80°C, their strength decreases (depending on the size, as well as shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
  • Magnets exposed to a humid environment can corrode. Therefore during using outdoors, we advise using waterproof magnets made of rubber, plastic or other material resistant to moisture
  • We recommend casing - magnetic mechanism, due to difficulties in realizing threads inside the magnet and complex forms.
  • Health risk related to microscopic parts of magnets pose a threat, if swallowed, which is particularly important in the context of child safety. It is also worth noting that small elements of these magnets can be problematic in diagnostics medical when they are in the body.
  • Higher cost of purchase is a significant factor to consider compared to ceramic magnets, especially in budget applications

Lifting parameters

Maximum magnetic pulling forcewhat contributes to it?

The force parameter is a measurement result executed under specific, ideal conditions:
  • using a base made of high-permeability steel, acting as a magnetic yoke
  • whose transverse dimension equals approx. 10 mm
  • characterized by smoothness
  • under conditions of no distance (surface-to-surface)
  • under axial force vector (90-degree angle)
  • in temp. approx. 20°C

Practical lifting capacity: influencing factors

In real-world applications, the actual lifting capacity is determined by many variables, presented from crucial:
  • Air gap (between the magnet and the plate), as even a very small distance (e.g. 0.5 mm) can cause a reduction in force by up to 50% (this also applies to paint, rust or debris).
  • Pull-off angle – remember that the magnet has greatest strength perpendicularly. Under sliding down, the holding force drops significantly, often to levels of 20-30% of the nominal value.
  • Element thickness – to utilize 100% power, the steel must be adequately massive. Paper-thin metal limits the attraction force (the magnet "punches through" it).
  • Material type – the best choice is pure iron steel. Stainless steels may have worse magnetic properties.
  • Surface finish – ideal contact is possible only on smooth steel. Rough texture reduce the real contact area, reducing force.
  • Thermal factor – hot environment weakens pulling force. Exceeding the limit temperature can permanently damage the magnet.

Holding force was tested on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, in contrast under attempts to slide the magnet the holding force is lower. In addition, even a minimal clearance between the magnet and the plate decreases the load capacity.

Warnings
Power loss in heat

Standard neodymium magnets (N-type) undergo demagnetization when the temperature goes above 80°C. The loss of strength is permanent.

Threat to navigation

Remember: rare earth magnets produce a field that confuses precision electronics. Maintain a safe distance from your mobile, tablet, and GPS.

Do not underestimate power

Exercise caution. Neodymium magnets attract from a distance and connect with massive power, often faster than you can move away.

Electronic devices

Equipment safety: Neodymium magnets can damage payment cards and sensitive devices (heart implants, medical aids, mechanical watches).

Swallowing risk

Only for adults. Tiny parts can be swallowed, leading to intestinal necrosis. Keep away from children and animals.

Fire risk

Dust produced during cutting of magnets is flammable. Do not drill into magnets unless you are an expert.

Avoid contact if allergic

Nickel alert: The nickel-copper-nickel coating contains nickel. If redness appears, immediately stop handling magnets and use protective gear.

Crushing force

Watch your fingers. Two large magnets will snap together immediately with a force of massive weight, destroying anything in their path. Exercise extreme caution!

Medical implants

Patients with a heart stimulator have to keep an safe separation from magnets. The magnetic field can stop the functioning of the implant.

Fragile material

Despite metallic appearance, the material is brittle and cannot withstand shocks. Do not hit, as the magnet may shatter into sharp, dangerous pieces.

Attention! Need more info? Check our post: Why are neodymium magnets dangerous?
Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98