tel: +48 888 99 98 98

neodymium magnets

We provide red color magnets Nd2Fe14B - our store's offer. All "magnets" in our store are in stock for immediate purchase (check the list). Check out the magnet pricing for more details see the magnet price list

Magnets for treasure hunters F300 GOLD

Where to buy very strong neodymium magnet? Holders with magnets in airtight, solid steel casing are excellent for use in challenging weather, including during snow and rain read...

magnets with holders

Holders with magnets can be used to improve production, underwater discoveries, or locating meteorites made of ore check...

Enjoy delivery of your order if the order is placed before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 25x225 [2xM8] / N52 - magnetic separator

magnetic separator

Catalog no 130354

GTIN: 5906301813026

5

Diameter Ø [±0,1 mm]

25 mm

Height [±0,1 mm]

225 mm

Weight

0.01 g

688.80 with VAT / pcs + price for transport

560.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
560.00 ZŁ
688.80 ZŁ
price from 5 pcs
532.00 ZŁ
654.36 ZŁ
price from 10 pcs
504.00 ZŁ
619.92 ZŁ

Need advice?

Give us a call +48 22 499 98 98 or contact us using inquiry form the contact section.
Lifting power and structure of a magnet can be tested using our modular calculator.

Orders submitted before 14:00 will be dispatched today!

SM 25x225 [2xM8] / N52 - magnetic separator

Specification/characteristics SM 25x225 [2xM8] / N52 - magnetic separator
properties
values
Cat. no.
130354
GTIN
5906301813026
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
25 mm [±0,1 mm]
Height
225 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N52

properties
values
units
remenance Br [Min. - Max.] ?
14.2-14.7
kGs
remenance Br [Min. - Max.] ?
1420-1470
T
coercivity bHc ?
10.8-12.5
kOe
coercivity bHc ?
860-995
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
48-53
BH max MGOe
energy density [Min. - Max.] ?
380-422
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device roller magnetic is based on the use of neodymium magnets, which are embedded in a construction made of stainless steel usually AISI304. Due to this, it is possible to efficiently remove ferromagnetic particles from the mixture. An important element of its operation is the repulsion of N and S poles of neodymium magnets, which causes magnetic substances to be attracted. The thickness of the magnet and its structure pitch affect the power and range of the separator's operation.
Generally speaking, magnetic separators are used to separate ferromagnetic particles. If the cans are made of ferromagnetic materials, the separator will be able to separate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not effectively segregate them.
Yes, magnetic rollers are employed in food production for the elimination of metallic contaminants, such as iron fragments or iron dust. Our rollers are made from acid-resistant steel, AISI 304, suitable for use in food.
Magnetic rollers, otherwise magnetic separators, are used in metal separation, food production as well as waste processing. They help in eliminating iron dust during the process of separating metals from other materials.
Our magnetic rollers consist of neodymium magnets placed in a stainless steel tube cylinder made of stainless steel with a wall thickness of 1mm.
Both ends of the magnetic bar will be with M8 threaded openings, enabling easy installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars differ in terms of flux density, magnetic force lines and the field of the magnetic field. We produce them in materials, N42 and N52.
Often it is believed that the stronger the magnet, the more effective. But, the strength of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and expected needs. The standard operating temperature of a magnetic bar is 80°C.
If the magnet is thin, the magnetic force lines are more compressed. By contrast, when the magnet is thick, the force lines are extended and reach further.
For making the casings of magnetic separators - rollers, most often stainless steel is used, particularly types AISI 316, AISI 316L, and AISI 304.
In a saltwater contact, AISI 316 steel exhibits the best resistance due to its outstanding anti-corrosion properties.
Magnetic bars stand out for their specific arrangement of poles and their capability to attract magnetic particles directly onto their surface, as opposed to other separators that often use complex filtration systems.
Technical designations and terms pertaining to magnetic separators comprise amongst others polarity, magnetic induction, magnet pitch, as well as the type of steel used.
Magnetic induction for a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, seeking the highest magnetic field value near the magnetic pole. The result is verified in a value table - the lowest is N30. All designations less than N27 or N25 suggest recycling that falls below the standard - they are not suitable.
Neodymium magnetic rollers offer many advantages, including a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. However, some of the downsides may involve the requirement for frequent cleaning, greater weight, and potential installation difficulties.
For proper maintenance of neodymium magnetic rollers, it’s worth washing after each use, avoiding temperatures up to 80°C. The rollers our rollers have waterproofing IP67, so if they are leaky, the magnets inside can oxidize and weaken. Magnetic field measurements is recommended be carried out once every 24 months. Caution should be taken during use, as there is a risk getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where the removal of iron metals and iron filings is essential.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their notable magnetic energy, neodymium magnets have these key benefits:

  • They do not lose their magnetism, even after nearly ten years – the decrease of power is only ~1% (theoretically),
  • They remain magnetized despite exposure to magnetic surroundings,
  • Thanks to the glossy finish and silver coating, they have an visually attractive appearance,
  • They exhibit elevated levels of magnetic induction near the outer area of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • With the option for tailored forming and precise design, these magnets can be produced in numerous shapes and sizes, greatly improving engineering flexibility,
  • Wide application in modern technologies – they serve a purpose in computer drives, rotating machines, clinical machines as well as sophisticated instruments,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, while occupying minimal space,

Disadvantages of magnetic elements:

  • They can break when subjected to a strong impact. If the magnets are exposed to shocks, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture and enhances its overall resistance,
  • They lose field intensity at increased temperatures. Most neodymium magnets experience permanent decline in strength when heated above 80°C (depending on the shape and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Due to corrosion risk in humid conditions, it is advisable to use sealed magnets made of rubber for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is difficult,
  • Safety concern linked to microscopic shards may arise, in case of ingestion, which is significant in the health of young users. Furthermore, tiny components from these products may hinder health screening once in the system,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Maximum lifting capacity of the magnetwhat it depends on?

The given strength of the magnet represents the optimal strength, determined in ideal conditions, namely:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • with a thickness of minimum 10 mm
  • with a refined outer layer
  • with zero air gap
  • in a perpendicular direction of force
  • at room temperature

Determinants of lifting force in real conditions

The lifting capacity of a magnet is determined by in practice the following factors, ordered from most important to least significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was measured on the plate surface of 20 mm thickness, when a perpendicular force was applied, however under parallel forces the load capacity is reduced by as much as 75%. Additionally, even a slight gap {between} the magnet and the plate lowers the load capacity.

Be Cautious with Neodymium Magnets

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Neodymium magnets are the strongest, most remarkable magnets on earth, and the surprising force between them can shock you at first.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can demagnetize at high temperatures.

Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

 It is essential to maintain neodymium magnets out of reach from children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnetic are noted for their fragility, which can cause them to crumble.

Neodymium magnetic are fragile and will shatter if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Magnets will jump and contact together within a radius of several to almost 10 cm from each other.

Be careful!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98