tel: +48 22 499 98 98

neodymium magnets

We provide red color magnetic Nd2Fe14B - our proposal. Practically all magnesy on our website are available for immediate purchase (check the list). Check out the magnet pricing for more details check the magnet price list

Magnets for treasure hunters F300 GOLD

Where to purchase strong magnet? Magnet holders in airtight, solid steel enclosure are perfect for use in difficult weather conditions, including snow and rain see more...

magnets with holders

Holders with magnets can be applied to enhance production, underwater discoveries, or locating meteorites from gold more information...

Enjoy shipping of your order if the order is placed before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available Ships tomorrow

UMS 16x6.5x3.5x5 / N38 - conical magnetic holder

conical magnetic holder

Catalog no 220326

GTIN: 5906301814160

5

Diameter Ø [±0,1 mm]

16 mm

cone dimension Ø [±0,1 mm]

6.5x3.5 mm

Height [±0,1 mm]

5 mm

Weight

5.5 g

Magnetization Direction

↑ axial

Load capacity

5 kg / 49.03 N

Coating

[NiCuNi] nickel

4.48 with VAT / pcs + price for transport

3.64 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
3.64 ZŁ
4.48 ZŁ
price from 100 pcs
3.09 ZŁ
3.81 ZŁ
price from 250 pcs
2.37 ZŁ
2.91 ZŁ

Need advice?

Call us now +48 888 99 98 98 otherwise send us a note using contact form our website.
Lifting power and form of magnets can be estimated using our force calculator.

Same-day shipping for orders placed before 14:00.

UMS 16x6.5x3.5x5 / N38 - conical magnetic holder

Specification/characteristics UMS 16x6.5x3.5x5 / N38 - conical magnetic holder
properties
values
Cat. no.
220326
GTIN
5906301814160
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
16 mm [±0,1 mm]
cone dimension Ø
6.5x3.5 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
5.5 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
5 kg / 49.03 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their exceptional strength, neodymium magnets offer the following advantages:

  • They have stable power, and over more than ten years their attraction force decreases symbolically – ~1% (in testing),
  • They show exceptional resistance to demagnetization from external field exposure,
  • In other words, due to the glossy silver coating, the magnet obtains an aesthetic appearance,
  • Magnetic induction on the surface of these magnets is very strong,
  • Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
  • The ability for precise shaping or adaptation to specific needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which amplifies their functionality across industries,
  • Key role in advanced technical fields – they serve a purpose in hard drives, electric motors, medical equipment along with high-tech tools,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, in miniature format,

Disadvantages of rare earth magnets:

  • They are prone to breaking when subjected to a powerful impact. If the magnets are exposed to mechanical hits, they should be placed in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture and strengthens its overall strength,
  • High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a humid environment, especially when used outside, we recommend using sealed magnets, such as those made of plastic,
  • Limited ability to create threads in the magnet – the use of a external casing is recommended,
  • Health risk due to small fragments may arise, if ingested accidentally, which is notable in the context of child safety. Additionally, tiny components from these assemblies have the potential to disrupt scanning after being swallowed,
  • In cases of large-volume purchasing, neodymium magnet cost may be a barrier,

Best holding force of the magnet in ideal parameterswhat it depends on?

The given strength of the magnet means the optimal strength, assessed in ideal conditions, that is:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a refined outer layer
  • in conditions of no clearance
  • with vertical force applied
  • at room temperature

Determinants of practical lifting force of a magnet

In practice, the holding capacity of a magnet is affected by these factors, in descending order of importance:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on plates with a smooth surface of optimal thickness, under perpendicular forces, however under attempts to slide the magnet the lifting capacity is smaller. Additionally, even a minimal clearance {between} the magnet and the plate decreases the load capacity.

Handle Neodymium Magnets with Caution

 Maintain neodymium magnets far from children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Keep neodymium magnets away from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.

Neodymium magnets jump and also touch each other mutually within a radius of several to almost 10 cm from each other.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can demagnetize at high temperatures.

Although magnets are generally resilient, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets are especially fragile, resulting in their breakage.

Neodymium magnets are highly fragile, and by joining them in an uncontrolled manner, they will crumble. Magnets made of neodymium are made of metal and coated with a shiny nickel, but they are not as durable as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Avoid bringing neodymium magnets close to a phone or GPS.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their power can shock you.

Make sure to review all the information we have provided. This will help you avoid harm to your body and damage to the magnets.

Safety precautions!

In order to show why neodymium magnets are so dangerous, see the article - How dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98