UMS 16x6.5x3.5x5 / N38 - conical magnetic holder
conical magnetic holder
Catalog no 220326
GTIN: 5906301814160
Diameter Ø [±0,1 mm]
16 mm
cone dimension Ø [±0,1 mm]
6.5x3.5 mm
Height [±0,1 mm]
5 mm
Weight
5.5 g
Magnetization Direction
↑ axial
Load capacity
5 kg / 49.03 N
Coating
[NiCuNi] nickel
4.48 ZŁ with VAT / pcs + price for transport
3.64 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need advice?
Pick up the phone and ask
+48 888 99 98 98
or get in touch through
inquiry form
the contact section.
Weight along with shape of neodymium magnets can be verified using our
modular calculator.
Same-day processing for orders placed before 14:00.
UMS 16x6.5x3.5x5 / N38 - conical magnetic holder
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Besides their stability, neodymium magnets are valued for these benefits:
- Their strength remains stable, and after around 10 years, it drops only by ~1% (according to research),
- They remain magnetized despite exposure to strong external fields,
- Because of the reflective layer of silver, the component looks aesthetically refined,
- The outer field strength of the magnet shows advanced magnetic properties,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- Thanks to the possibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in different geometries, which increases their functional possibilities,
- Significant impact in advanced technical fields – they find application in data storage devices, electric motors, clinical machines along with other advanced devices,
- Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in small dimensions, which makes them useful in compact constructions
Disadvantages of magnetic elements:
- They can break when subjected to a sudden impact. If the magnets are exposed to shocks, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks and additionally strengthens its overall strength,
- High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Magnets exposed to damp air can corrode. Therefore, for outdoor applications, we suggest waterproof types made of rubber,
- Limited ability to create precision features in the magnet – the use of a mechanical support is recommended,
- Potential hazard due to small fragments may arise, if ingested accidentally, which is crucial in the context of child safety. Additionally, small elements from these products can interfere with diagnostics after being swallowed,
- High unit cost – neodymium magnets are costlier than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications
Maximum lifting capacity of the magnet – what affects it?
The given pulling force of the magnet means the maximum force, measured under optimal conditions, that is:
- with mild steel, used as a magnetic flux conductor
- of a thickness of at least 10 mm
- with a refined outer layer
- with no separation
- under perpendicular detachment force
- in normal thermal conditions
Determinants of practical lifting force of a magnet
In practice, the holding capacity of a magnet is conditioned by the following aspects, from crucial to less important:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was conducted on a smooth plate of suitable thickness, under perpendicular forces, in contrast under parallel forces the load capacity is reduced by as much as 75%. Moreover, even a slight gap {between} the magnet’s surface and the plate decreases the holding force.
Precautions
It is important to keep neodymium magnets out of reach from youngest children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their power can surprise you.
To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Neodymium magnetic are extremely fragile, they easily break and can become damaged.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Neodymium magnets can demagnetize at high temperatures.
Despite the fact that magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Keep neodymium magnets away from the wallet, computer, and TV.
Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
Neodymium magnets jump and touch each other mutually within a radius of several to almost 10 cm from each other.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Pay attention!
So that know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous strong neodymium magnets.
