tel: +48 888 99 98 98

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our store's offer. All magnesy on our website are available for immediate delivery (check the list). See the magnet pricing for more details see the magnet price list

Magnet for searching F300 GOLD

Where to buy powerful magnet? Magnet holders in solid and airtight steel casing are ideally suited for use in challenging climate conditions, including snow and rain check...

magnetic holders

Magnetic holders can be used to enhance production processes, exploring underwater areas, or searching for meteorites from gold read...

Shipping is shipped on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o.
Product available Ships today (order by 14:00)

UMS 16x6.5x3.5x5 / N38 - conical magnetic holder

conical magnetic holder

Catalog no 220326

GTIN: 5906301814160

5

Diameter Ø [±0,1 mm]

16 mm

cone dimension Ø [±0,1 mm]

6.5x3.5 mm

Height [±0,1 mm]

5 mm

Weight

5.5 g

Magnetization Direction

↑ axial

Load capacity

5 kg / 49.03 N

Coating

[NiCuNi] nickel

4.48 with VAT / pcs + price for transport

3.64 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
3.64 ZŁ
4.48 ZŁ
price from 100 pcs
3.09 ZŁ
3.81 ZŁ
price from 250 pcs
2.37 ZŁ
2.91 ZŁ

Want to talk magnets?

Contact us by phone +48 888 99 98 98 if you prefer let us know through contact form the contact section.
Lifting power and appearance of neodymium magnets can be estimated using our magnetic mass calculator.

Same-day shipping for orders placed before 14:00.

UMS 16x6.5x3.5x5 / N38 - conical magnetic holder

Specification/characteristics UMS 16x6.5x3.5x5 / N38 - conical magnetic holder
properties
values
Cat. no.
220326
GTIN
5906301814160
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
16 mm [±0,1 mm]
cone dimension Ø
6.5x3.5 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
5.5 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
5 kg / 49.03 N
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from their notable magnetic energy, neodymium magnets have these key benefits:

  • They have unchanged lifting capacity, and over more than 10 years their attraction force decreases symbolically – ~1% (according to theory),
  • They show exceptional resistance to demagnetization from outside magnetic sources,
  • In other words, due to the shiny gold coating, the magnet obtains an aesthetic appearance,
  • The outer field strength of the magnet shows elevated magnetic properties,
  • Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • With the option for customized forming and targeted design, these magnets can be produced in multiple shapes and sizes, greatly improving engineering flexibility,
  • Important function in cutting-edge sectors – they are used in hard drives, electromechanical systems, clinical machines or even technologically developed systems,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, with minimal size,

Disadvantages of rare earth magnets:

  • They are fragile when subjected to a powerful impact. If the magnets are exposed to shocks, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from fracture while also enhances its overall robustness,
  • High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of synthetic coating for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is difficult,
  • Health risk due to small fragments may arise, when consumed by mistake, which is important in the family environments. It should also be noted that minuscule fragments from these magnets have the potential to hinder health screening after being swallowed,
  • High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which may limit large-scale applications

Maximum lifting capacity of the magnetwhat it depends on?

The given pulling force of the magnet represents the maximum force, measured in ideal conditions, specifically:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with no separation
  • under perpendicular detachment force
  • under standard ambient temperature

Determinants of lifting force in real conditions

Practical lifting force is dependent on factors, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was measured by applying a polished steel plate of suitable thickness (min. 20 mm), under vertically applied force, however under parallel forces the holding force is lower. Moreover, even a small distance {between} the magnet’s surface and the plate lowers the lifting capacity.

Exercise Caution with Neodymium Magnets

Neodymium magnets are the most powerful magnets ever invented. Their power can surprise you.

To use magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.

Neodymium magnets are delicate as well as can easily break as well as shatter.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

If you have a finger between or on the path of attracting magnets, there may be a severe cut or even a fracture.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Neodymium magnets can demagnetize at high temperatures.

Although magnets are generally resilient, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Never bring neodymium magnets close to a phone and GPS.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

  Do not give neodymium magnets to youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are not recommended for people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Exercise caution!

In order to illustrate why neodymium magnets are so dangerous, read the article - How dangerous are strong neodymium magnets?.

Dhit sp. z o.o.

e-mail: bok@dhit.pl

tel: +48 888 99 98 98