UMS 16x6.5x3.5x5 / N38 - conical magnetic holder
conical magnetic holder
Catalog no 220326
GTIN: 5906301814160
Diameter Ø [±0,1 mm]
16 mm
cone dimension Ø [±0,1 mm]
6.5x3.5 mm
Height [±0,1 mm]
5 mm
Weight
5.5 g
Magnetization Direction
↑ axial
Load capacity
5 kg / 49.03 N
Coating
[NiCuNi] nickel
4.48 ZŁ with VAT / pcs + price for transport
3.64 ZŁ net + 23% VAT / pcs
2.64 ZŁ net was the lowest price in the last 30 days
bulk discounts:
Need more?Want to talk magnets?
Contact us by phone
+48 22 499 98 98
or get in touch via
contact form
our website.
Weight and appearance of magnets can be tested on our
power calculator.
Orders placed before 14:00 will be shipped the same business day.
UMS 16x6.5x3.5x5 / N38 - conical magnetic holder
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their magnetic efficiency, neodymium magnets provide the following advantages:
- They have unchanged lifting capacity, and over nearly ten years their attraction force decreases symbolically – ~1% (according to theory),
- They protect against demagnetization induced by surrounding electromagnetic environments very well,
- Thanks to the polished finish and gold coating, they have an aesthetic appearance,
- Magnetic induction on the surface of these magnets is impressively powerful,
- With the right combination of magnetic alloys, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the form),
- With the option for customized forming and personalized design, these magnets can be produced in multiple shapes and sizes, greatly improving design adaptation,
- Significant impact in cutting-edge sectors – they are used in computer drives, electric motors, healthcare devices along with high-tech tools,
- Compactness – despite their small size, they generate strong force, making them ideal for precision applications
Disadvantages of neodymium magnets:
- They may fracture when subjected to a strong impact. If the magnets are exposed to mechanical hits, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from fracture and additionally strengthens its overall strength,
- High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a humid environment, especially when used outside, we recommend using moisture-resistant magnets, such as those made of polymer,
- Limited ability to create internal holes in the magnet – the use of a magnetic holder is recommended,
- Possible threat from tiny pieces may arise, when consumed by mistake, which is significant in the family environments. Additionally, tiny components from these devices can disrupt scanning after being swallowed,
- Due to the price of neodymium, their cost is considerably higher,
Maximum holding power of the magnet – what affects it?
The given lifting capacity of the magnet represents the maximum lifting force, determined in ideal conditions, specifically:
- with mild steel, serving as a magnetic flux conductor
- with a thickness of minimum 10 mm
- with a polished side
- with no separation
- with vertical force applied
- under standard ambient temperature
Lifting capacity in real conditions – factors
Practical lifting force is determined by factors, by priority:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was conducted on a smooth plate of optimal thickness, under perpendicular forces, however under parallel forces the holding force is lower. Additionally, even a slight gap {between} the magnet’s surface and the plate decreases the holding force.
Exercise Caution with Neodymium Magnets
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
Magnets attract each other within a distance of several to around 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a serious injury may occur. Magnets, depending on their size, can even cut off a finger or there can be a significant pressure or a fracture.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.
Neodymium magnets can become demagnetized at high temperatures.
Even though magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can shock you at first.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Neodymium magnets should not be in the vicinity children.
Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Neodymium magnets are known for their fragility, which can cause them to shatter.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
The magnet coating contains nickel, so be cautious if you have a nickel allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Do not bring neodymium magnets close to GPS and smartphones.
Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Exercise caution!
Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.
