MW 20x2.5 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010042
GTIN/EAN: 5906301810414
Diameter Ø
20 mm [±0,1 mm]
Height
2.5 mm [±0,1 mm]
Weight
5.89 g
Magnetization Direction
↑ axial
Load capacity
2.41 kg / 23.65 N
Magnetic Induction
150.34 mT / 1503 Gs
Coating
[NiCuNi] Nickel
2.51 ZŁ with VAT / pcs + price for transport
2.04 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Give us a call
+48 888 99 98 98
if you prefer drop us a message via
inquiry form
the contact page.
Force as well as form of magnets can be analyzed using our
force calculator.
Orders placed before 14:00 will be shipped the same business day.
Technical specification - MW 20x2.5 / N38 - cylindrical magnet
Specification / characteristics - MW 20x2.5 / N38 - cylindrical magnet
| properties | values |
|---|---|
| Cat. no. | 010042 |
| GTIN/EAN | 5906301810414 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter Ø | 20 mm [±0,1 mm] |
| Height | 2.5 mm [±0,1 mm] |
| Weight | 5.89 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 2.41 kg / 23.65 N |
| Magnetic Induction ~ ? | 150.34 mT / 1503 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical modeling of the assembly - data
These information are the outcome of a engineering simulation. Results were calculated on models for the class Nd2Fe14B. Actual parameters may differ. Please consider these calculations as a preliminary roadmap for designers.
Table 1: Static force (pull vs distance) - interaction chart
MW 20x2.5 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
1503 Gs
150.3 mT
|
2.41 kg / 5.31 lbs
2410.0 g / 23.6 N
|
strong |
| 1 mm |
1431 Gs
143.1 mT
|
2.18 kg / 4.82 lbs
2184.9 g / 21.4 N
|
strong |
| 2 mm |
1328 Gs
132.8 mT
|
1.88 kg / 4.15 lbs
1882.0 g / 18.5 N
|
low risk |
| 3 mm |
1206 Gs
120.6 mT
|
1.55 kg / 3.42 lbs
1552.2 g / 15.2 N
|
low risk |
| 5 mm |
947 Gs
94.7 mT
|
0.96 kg / 2.11 lbs
957.1 g / 9.4 N
|
low risk |
| 10 mm |
457 Gs
45.7 mT
|
0.22 kg / 0.49 lbs
223.1 g / 2.2 N
|
low risk |
| 15 mm |
224 Gs
22.4 mT
|
0.05 kg / 0.12 lbs
53.7 g / 0.5 N
|
low risk |
| 20 mm |
120 Gs
12.0 mT
|
0.02 kg / 0.03 lbs
15.4 g / 0.2 N
|
low risk |
| 30 mm |
44 Gs
4.4 mT
|
0.00 kg / 0.00 lbs
2.1 g / 0.0 N
|
low risk |
| 50 mm |
11 Gs
1.1 mT
|
0.00 kg / 0.00 lbs
0.1 g / 0.0 N
|
low risk |
Table 2: Shear hold (vertical surface)
MW 20x2.5 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.48 kg / 1.06 lbs
482.0 g / 4.7 N
|
| 1 mm | Stal (~0.2) |
0.44 kg / 0.96 lbs
436.0 g / 4.3 N
|
| 2 mm | Stal (~0.2) |
0.38 kg / 0.83 lbs
376.0 g / 3.7 N
|
| 3 mm | Stal (~0.2) |
0.31 kg / 0.68 lbs
310.0 g / 3.0 N
|
| 5 mm | Stal (~0.2) |
0.19 kg / 0.42 lbs
192.0 g / 1.9 N
|
| 10 mm | Stal (~0.2) |
0.04 kg / 0.10 lbs
44.0 g / 0.4 N
|
| 15 mm | Stal (~0.2) |
0.01 kg / 0.02 lbs
10.0 g / 0.1 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Wall mounting (sliding) - behavior on slippery surfaces
MW 20x2.5 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.72 kg / 1.59 lbs
723.0 g / 7.1 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.48 kg / 1.06 lbs
482.0 g / 4.7 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.24 kg / 0.53 lbs
241.0 g / 2.4 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
1.21 kg / 2.66 lbs
1205.0 g / 11.8 N
|
Table 4: Steel thickness (substrate influence) - sheet metal selection
MW 20x2.5 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.24 kg / 0.53 lbs
241.0 g / 2.4 N
|
| 1 mm |
|
0.60 kg / 1.33 lbs
602.5 g / 5.9 N
|
| 2 mm |
|
1.21 kg / 2.66 lbs
1205.0 g / 11.8 N
|
| 3 mm |
|
1.81 kg / 3.98 lbs
1807.5 g / 17.7 N
|
| 5 mm |
|
2.41 kg / 5.31 lbs
2410.0 g / 23.6 N
|
| 10 mm |
|
2.41 kg / 5.31 lbs
2410.0 g / 23.6 N
|
| 11 mm |
|
2.41 kg / 5.31 lbs
2410.0 g / 23.6 N
|
| 12 mm |
|
2.41 kg / 5.31 lbs
2410.0 g / 23.6 N
|
Table 5: Thermal resistance (material behavior) - resistance threshold
MW 20x2.5 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.41 kg / 5.31 lbs
2410.0 g / 23.6 N
|
OK |
| 40 °C | -2.2% |
2.36 kg / 5.20 lbs
2357.0 g / 23.1 N
|
OK |
| 60 °C | -4.4% |
2.30 kg / 5.08 lbs
2304.0 g / 22.6 N
|
|
| 80 °C | -6.6% |
2.25 kg / 4.96 lbs
2250.9 g / 22.1 N
|
|
| 100 °C | -28.8% |
1.72 kg / 3.78 lbs
1715.9 g / 16.8 N
|
Table 6: Magnet-Magnet interaction (repulsion) - field range
MW 20x2.5 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
4.38 kg / 9.65 lbs
2 771 Gs
|
0.66 kg / 1.45 lbs
656 g / 6.4 N
|
N/A |
| 1 mm |
4.20 kg / 9.25 lbs
2 944 Gs
|
0.63 kg / 1.39 lbs
629 g / 6.2 N
|
3.78 kg / 8.33 lbs
~0 Gs
|
| 2 mm |
3.97 kg / 8.75 lbs
2 862 Gs
|
0.60 kg / 1.31 lbs
595 g / 5.8 N
|
3.57 kg / 7.87 lbs
~0 Gs
|
| 3 mm |
3.70 kg / 8.17 lbs
2 766 Gs
|
0.56 kg / 1.22 lbs
556 g / 5.5 N
|
3.33 kg / 7.35 lbs
~0 Gs
|
| 5 mm |
3.12 kg / 6.88 lbs
2 538 Gs
|
0.47 kg / 1.03 lbs
468 g / 4.6 N
|
2.81 kg / 6.19 lbs
~0 Gs
|
| 10 mm |
1.74 kg / 3.83 lbs
1 895 Gs
|
0.26 kg / 0.57 lbs
261 g / 2.6 N
|
1.56 kg / 3.45 lbs
~0 Gs
|
| 20 mm |
0.41 kg / 0.89 lbs
915 Gs
|
0.06 kg / 0.13 lbs
61 g / 0.6 N
|
0.36 kg / 0.80 lbs
~0 Gs
|
| 50 mm |
0.01 kg / 0.02 lbs
140 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.01 lbs
88 Gs
|
0.00 kg / 0.00 lbs
1 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
58 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
41 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
29 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
22 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Protective zones (electronics) - warnings
MW 20x2.5 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 7.0 cm |
| Hearing aid | 10 Gs (1.0 mT) | 5.5 cm |
| Timepiece | 20 Gs (2.0 mT) | 4.5 cm |
| Phone / Smartphone | 40 Gs (4.0 mT) | 3.5 cm |
| Remote | 50 Gs (5.0 mT) | 3.0 cm |
| Payment card | 400 Gs (40.0 mT) | 1.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Collisions (kinetic energy) - collision effects
MW 20x2.5 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
21.55 km/h
(5.99 m/s)
|
0.11 J | |
| 30 mm |
35.35 km/h
(9.82 m/s)
|
0.28 J | |
| 50 mm |
45.62 km/h
(12.67 m/s)
|
0.47 J | |
| 100 mm |
64.51 km/h
(17.92 m/s)
|
0.95 J |
Table 9: Coating parameters (durability)
MW 20x2.5 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Electrical data (Flux)
MW 20x2.5 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 5 996 Mx | 60.0 µWb |
| Pc Coefficient | 0.19 | Low (Flat) |
Table 11: Hydrostatics and buoyancy
MW 20x2.5 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 2.41 kg | Standard |
| Water (riverbed) |
2.76 kg
(+0.35 kg buoyancy gain)
|
+14.5% |
1. Sliding resistance
*Caution: On a vertical wall, the magnet retains merely approx. 20-30% of its nominal pull.
2. Efficiency vs thickness
*Thin metal sheet (e.g. computer case) significantly weakens the holding force.
3. Heat tolerance
*For standard magnets, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.19
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Chemical composition
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Ecology and recycling (GPSR)
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
Other deals
Strengths and weaknesses of rare earth magnets.
Benefits
- They virtually do not lose strength, because even after ten years the performance loss is only ~1% (according to literature),
- They have excellent resistance to magnetic field loss due to external magnetic sources,
- In other words, due to the metallic finish of nickel, the element gains visual value,
- Magnets exhibit impressive magnetic induction on the outer layer,
- Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their form) at temperatures up to 230°C and above...
- Possibility of precise creating and adapting to specific applications,
- Huge importance in advanced technology sectors – they find application in HDD drives, electric motors, medical devices, also modern systems.
- Thanks to concentrated force, small magnets offer high operating force, with minimal size,
Weaknesses
- They are prone to damage upon heavy impacts. To avoid cracks, it is worth securing magnets in a protective case. Such protection not only protects the magnet but also increases its resistance to damage
- NdFeB magnets lose power when exposed to high temperatures. After reaching 80°C, many of them experience permanent weakening of power (a factor is the shape and dimensions of the magnet). We offer magnets specially adapted to work at temperatures up to 230°C marked [AH], which are extremely resistant to heat
- They oxidize in a humid environment. For use outdoors we recommend using waterproof magnets e.g. in rubber, plastic
- We recommend a housing - magnetic holder, due to difficulties in creating threads inside the magnet and complex shapes.
- Potential hazard related to microscopic parts of magnets are risky, when accidentally swallowed, which is particularly important in the context of child health protection. Furthermore, small elements of these products can disrupt the diagnostic process medical when they are in the body.
- High unit price – neodymium magnets cost more than other types of magnets (e.g. ferrite), which hinders application in large quantities
Lifting parameters
Best holding force of the magnet in ideal parameters – what it depends on?
- with the contact of a yoke made of special test steel, ensuring full magnetic saturation
- possessing a thickness of minimum 10 mm to avoid saturation
- with an ground contact surface
- with direct contact (no paint)
- during pulling in a direction vertical to the plane
- in stable room temperature
Determinants of lifting force in real conditions
- Space between surfaces – every millimeter of separation (caused e.g. by varnish or unevenness) drastically reduces the magnet efficiency, often by half at just 0.5 mm.
- Loading method – declared lifting capacity refers to pulling vertically. When applying parallel force, the magnet exhibits significantly lower power (typically approx. 20-30% of nominal force).
- Element thickness – for full efficiency, the steel must be sufficiently thick. Paper-thin metal limits the attraction force (the magnet "punches through" it).
- Steel grade – ideal substrate is high-permeability steel. Cast iron may have worse magnetic properties.
- Smoothness – ideal contact is possible only on smooth steel. Rough texture create air cushions, weakening the magnet.
- Temperature – heating the magnet results in weakening of induction. It is worth remembering the maximum operating temperature for a given model.
Lifting capacity was determined with the use of a polished steel plate of optimal thickness (min. 20 mm), under vertically applied force, in contrast under attempts to slide the magnet the load capacity is reduced by as much as 5 times. In addition, even a slight gap between the magnet and the plate decreases the lifting capacity.
Safe handling of neodymium magnets
Handling guide
Before starting, read the rules. Sudden snapping can destroy the magnet or hurt your hand. Be predictive.
Magnets are brittle
Beware of splinters. Magnets can fracture upon uncontrolled impact, ejecting sharp fragments into the air. Wear goggles.
Swallowing risk
Absolutely keep magnets away from children. Ingestion danger is significant, and the consequences of magnets clamping inside the body are life-threatening.
Crushing force
Big blocks can smash fingers instantly. Never place your hand between two attracting surfaces.
Skin irritation risks
Warning for allergy sufferers: The nickel-copper-nickel coating contains nickel. If an allergic reaction happens, immediately stop handling magnets and wear gloves.
Safe distance
Powerful magnetic fields can destroy records on credit cards, HDDs, and other magnetic media. Keep a distance of min. 10 cm.
Implant safety
Life threat: Neodymium magnets can turn off heart devices and defibrillators. Do not approach if you have electronic implants.
Fire risk
Combustion risk: Rare earth powder is explosive. Do not process magnets without safety gear as this may cause fire.
Thermal limits
Monitor thermal conditions. Exposing the magnet to high heat will destroy its properties and pulling force.
Keep away from electronics
Note: neodymium magnets generate a field that confuses precision electronics. Keep a separation from your phone, device, and navigation systems.
