tel: +48 888 99 98 98

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our proposal. Practically all magnesy on our website are in stock for immediate purchase (see the list). Check out the magnet price list for more details see the magnet price list

Magnet for water searching F300 GOLD

Where to purchase powerful neodymium magnet? Holders with magnets in airtight, solid steel enclosure are excellent for use in difficult, demanding climate conditions, including in the rain and snow more information...

magnets with holders

Holders with magnets can be used to improve production processes, exploring underwater areas, or locating meteorites made of ore see...

We promise to ship your order if the order is placed before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 20x2.5 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010042

GTIN: 5906301810414

5

Diameter Ø [±0,1 mm]

20 mm

Height [±0,1 mm]

2.5 mm

Weight

5.89 g

Magnetization Direction

↑ axial

Load capacity

2.76 kg / 27.07 N

Magnetic Induction

150.34 mT

Coating

[NiCuNi] nickel

1.78 with VAT / pcs + price for transport

1.45 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1.45 ZŁ
1.78 ZŁ
price from 414 pcs
1.36 ZŁ
1.68 ZŁ
price from 1725 pcs
1.28 ZŁ
1.57 ZŁ

Looking for a better price?

Contact us by phone +48 888 99 98 98 or contact us via inquiry form our website.
Strength along with structure of magnetic components can be verified on our power calculator.

Order by 14:00 and we’ll ship today!

MW 20x2.5 / N38 - cylindrical magnet

Specification/characteristics MW 20x2.5 / N38 - cylindrical magnet
properties
values
Cat. no.
010042
GTIN
5906301810414
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
20 mm [±0,1 mm]
Height
2.5 mm [±0,1 mm]
Weight
5.89 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
2.76 kg / 27.07 N
Magnetic Induction ~ ?
150.34 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets i.e. MW 20x2.5 / N38 are magnets made of neodymium in a cylindrical shape. They are known for their very strong magnetic properties, which exceed traditional ferrite magnets. Thanks to their power, they are frequently used in devices that need powerful holding. The standard temperature resistance of such magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature increases with the growth of the magnet. Additionally, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to enhance their durability to corrosion. The shape of a cylinder is also very popular among neodymium magnets. The magnet named MW 20x2.5 / N38 and a magnetic lifting capacity of 2.76 kg weighs only 5.89 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, represent the strongest known material for magnet production. The technology of their production requires a specialized approach and includes melting special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets are made available for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a coating of gold to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires special caution during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, and also in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address can be found directly in the contact tab. It's always worth visit the site for the current information as well as offers, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are practical in many applications, they can also constitute certain dangers. Due to their significant magnetic power, they can pull metallic objects with uncontrolled force, which can lead to damaging skin as well as other surfaces, especially hands. Do not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, thus they are coated with a thin protective layer. Generally, although they are very useful, they should be handled with due caution.
Neodymium magnets, with the formula neodymium-iron-boron, are presently the strongest available magnets on the market. They are produced through a advanced sintering process, which involves melting specific alloys of neodymium with additional metals and then shaping and heat treating. Their unmatched magnetic strength comes from the specific production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often coated with coatings, such as gold, to shield them from external factors and extend their lifespan. High temperatures exceeding 130°C can cause a loss of their magnetic strength, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may lose their magnetic properties.
A cylindrical neodymium magnet N50 and N52 is a powerful and strong metallic component designed as a cylinder, featuring strong holding power and universal applicability. Competitive price, fast shipping, durability and broad range of uses.

Advantages and disadvantages of neodymium magnets NdFeB.

Besides their magnetic performance, neodymium magnets are valued for these benefits:

  • They do not lose their magnetism, even after around ten years – the loss of lifting capacity is only ~1% (theoretically),
  • Their ability to resist magnetic interference from external fields is impressive,
  • Thanks to the glossy finish and nickel coating, they have an aesthetic appearance,
  • The outer field strength of the magnet shows remarkable magnetic properties,
  • With the right combination of materials, they reach increased thermal stability, enabling operation at or above 230°C (depending on the structure),
  • With the option for customized forming and personalized design, these magnets can be produced in various shapes and sizes, greatly improving design adaptation,
  • Key role in modern technologies – they find application in HDDs, electric drives, clinical machines along with high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in tiny dimensions, which makes them ideal in small systems

Disadvantages of neodymium magnets:

  • They may fracture when subjected to a powerful impact. If the magnets are exposed to physical collisions, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage and additionally increases its overall durability,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a moist environment – during outdoor use, we recommend using encapsulated magnets, such as those made of non-metallic materials,
  • Limited ability to create internal holes in the magnet – the use of a magnetic holder is recommended,
  • Health risk linked to microscopic shards may arise, in case of ingestion, which is notable in the health of young users. It should also be noted that miniature parts from these magnets have the potential to disrupt scanning if inside the body,
  • Due to expensive raw materials, their cost is relatively high,

Handle Neodymium Magnets Carefully

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can surprise you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Neodymium magnetic are known for their fragility, which can cause them to crumble.

Neodymium magnets are characterized by significant fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can demagnetize at high temperatures.

Even though magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Neodymium magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.

Neodymium magnets will jump and touch together within a distance of several to almost 10 cm from each other.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Do not bring neodymium magnets close to GPS and smartphones.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

  Neodymium magnets should not be in the vicinity children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Warning!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98