tel: +48 888 99 98 98

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our proposal. All "neodymium magnets" in our store are in stock for immediate purchase (check the list). Check out the magnet pricing for more details see the magnet price list

Magnets for searching F200 GOLD

Where to purchase very strong magnet? Magnet holders in solid and airtight steel enclosure are perfect for use in challenging weather conditions, including in the rain and snow more...

magnets with holders

Holders with magnets can be applied to enhance production processes, exploring underwater areas, or finding space rocks from gold read...

Shipping is always shipped on the same day by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MPL 15x15x5 / N38 - lamellar magnet

lamellar magnet

Catalog no 020120

GTIN: 5906301811268

5

length [±0,1 mm]

15 mm

Width [±0,1 mm]

15 mm

Height [±0,1 mm]

5 mm

Weight

8.44 g

Magnetization Direction

↑ axial

Load capacity

5.92 kg / 58.06 N

Magnetic Induction

318.00 mT

Coating

[NiCuNi] nickel

4.03 with VAT / pcs + price for transport

3.28 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
3.28 ZŁ
4.03 ZŁ
price from 200 pcs
3.08 ZŁ
3.79 ZŁ
price from 800 pcs
2.89 ZŁ
3.55 ZŁ

Can't decide what to choose?

Call us now +48 888 99 98 98 alternatively get in touch using contact form our website.
Parameters along with appearance of a magnet can be tested on our online calculation tool.

Orders submitted before 14:00 will be dispatched today!

MPL 15x15x5 / N38 - lamellar magnet

Specification/characteristics MPL 15x15x5 / N38 - lamellar magnet
properties
values
Cat. no.
020120
GTIN
5906301811268
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
15 mm [±0,1 mm]
Width
15 mm [±0,1 mm]
Height
5 mm [±0,1 mm]
Weight
8.44 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
5.92 kg / 58.06 N
Magnetic Induction ~ ?
318.00 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Flat neodymium magnets i.e. MPL 15x15x5 / N38 are magnets made from neodymium in a rectangular form. They are valued for their very strong magnetic properties, which are much stronger than traditional iron magnets.
Thanks to their mighty power, flat magnets are regularly applied in products that require very strong attraction.
Most common temperature resistance of flat magnets is 80 °C, but with larger dimensions, this value can increase.
In addition, flat magnets often have special coatings applied to their surfaces, e.g. nickel, gold, or chrome, to increase their corrosion resistance.
The magnet with the designation MPL 15x15x5 / N38 and a magnetic strength 5.92 kg with a weight of a mere 8.44 grams, making it the excellent choice for applications requiring a flat shape.
Neodymium flat magnets present a range of advantages versus other magnet shapes, which make them being an ideal choice for many applications:
Contact surface: Thanks to their flat shape, flat magnets guarantee a greater contact surface with adjacent parts, which is beneficial in applications requiring a stronger magnetic connection.
Technology applications: They are often applied in various devices, such as sensors, stepper motors, or speakers, where the flat shape is necessary for their operation.
Mounting: This form's flat shape makes mounting, especially when there's a need to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets gives the possibility designers a lot of flexibility in arranging them in structures, which is more difficult with magnets of more complex shapes.
Stability: In certain applications, the flat base of the flat magnet can offer better stability, reducing the risk of shifting or rotating. However, one should remember that the optimal shape of the magnet is dependent on the specific application and requirements. In some cases, other shapes, such as cylindrical or spherical, may be more appropriate.
How do magnets work? Magnets attract objects made of ferromagnetic materials, such as iron, objects containing nickel, materials with cobalt or special alloys of ferromagnetic metals. Moreover, magnets may lesser affect some other metals, such as steel. It’s worth noting that magnets are utilized in various devices and technologies.
Magnets work thanks to the properties of the magnetic field, which arises from the ordered movement of electrons in their structure. The magnetic field of magnets creates attractive interactions, which attract materials containing nickel or other magnetic materials.

Magnets have two main poles: north (N) and south (S), which interact with each other when they are oppositely oriented. Similar poles, such as two north poles, repel each other.
Due to these properties, magnets are commonly used in magnetic technologies, e.g. motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the greatest strength of attraction, making them perfect for applications requiring powerful magnetic fields. Moreover, the strength of a magnet depends on its dimensions and the material it is made of.
Magnets do not attract plastic, glass items, wooden materials and most gemstones. Moreover, magnets do not affect most metals, such as copper, aluminum, gold. Although these metals conduct electricity, do not exhibit ferromagnetic properties, meaning that they remain unaffected by a magnet, unless exposed to a very strong magnetic field.
It should be noted that high temperatures can weaken the magnet's effect. Every magnetic material has its Curie point, meaning that once this temperature is exceeded, the magnet stops being magnetic. Interestingly, strong magnets can interfere with the operation of devices, such as compasses, credit cards and even electronic devices sensitive to magnetic fields. For this reason, it is important to avoid placing magnets near such devices.
A neodymium plate magnet in classes N52 and N50 is a powerful and highly strong magnetic product shaped like a plate, providing high force and universal applicability. Very good price, fast shipping, resistance and multi-functionality.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their pulling strength, neodymium magnets provide the following advantages:

  • They do not lose their even during nearly ten years – the decrease of power is only ~1% (theoretically),
  • They remain magnetized despite exposure to strong external fields,
  • In other words, due to the shiny gold coating, the magnet obtains an stylish appearance,
  • They exhibit extremely high levels of magnetic induction near the outer area of the magnet,
  • With the right combination of compounds, they reach increased thermal stability, enabling operation at or above 230°C (depending on the form),
  • The ability for precise shaping or adjustment to individual needs – neodymium magnets can be manufactured in multiple variants of geometries, which enhances their versatility in applications,
  • Wide application in new technology industries – they serve a purpose in data storage devices, rotating machines, healthcare devices along with high-tech tools,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of NdFeB magnets:

  • They are fragile when subjected to a sudden impact. If the magnets are exposed to shocks, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage and additionally enhances its overall strength,
  • Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible performance loss (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a humid environment, especially when used outside, we recommend using waterproof magnets, such as those made of rubber,
  • The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is not feasible,
  • Possible threat from tiny pieces may arise, in case of ingestion, which is significant in the protection of children. Additionally, tiny components from these devices can complicate medical imaging if inside the body,
  • High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which can restrict large-scale applications

Maximum magnetic pulling forcewhat it depends on?

The given holding capacity of the magnet represents the highest holding force, calculated in the best circumstances, that is:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • in conditions of no clearance
  • under perpendicular detachment force
  • in normal thermal conditions

Practical aspects of lifting capacity – factors

In practice, the holding capacity of a magnet is affected by these factors, in descending order of importance:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on the plate surface of 20 mm thickness, when the force acted perpendicularly, however under parallel forces the holding force is lower. Moreover, even a slight gap {between} the magnet and the plate lowers the load capacity.

Exercise Caution with Neodymium Magnets

Neodymium magnetic are highly susceptible to damage, leading to their cracking.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Neodymium Magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets will attract each other within a distance of several to about 10 cm from each other. Remember not to insert fingers between magnets or in their path when attract. Depending on how huge the neodymium magnets are, they can lead to a cut or alternatively a fracture.

Keep neodymium magnets away from GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets are generally resilient, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are the strongest magnets ever created, and their strength can shock you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

  Magnets are not toys, youngest should not play with them.

Remember that neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

You should keep neodymium magnets at a safe distance from the wallet, computer, and TV.

Neodymium magnets generate strong magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Warning!

To raise awareness of why neodymium magnets are so dangerous, read the article titled How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98