tel: +48 22 499 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our offer. Practically all "neodymium magnets" in our store are in stock for immediate purchase (see the list). See the magnet price list for more details see the magnet price list

Magnet for treasure hunters F400 GOLD

Where to buy very strong magnet? Magnetic holders in airtight, solid steel casing are excellent for use in difficult, demanding weather, including snow and rain check...

magnets with holders

Holders with magnets can be used to facilitate production processes, exploring underwater areas, or locating space rocks made of metal see more...

Shipping is shipped if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 20x1.5 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010039

GTIN: 5906301810384

5

Diameter Ø [±0,1 mm]

20 mm

Height [±0,1 mm]

1.5 mm

Weight

3.53 g

Magnetization Direction

↑ axial

Load capacity

1.66 kg / 16.28 N

Magnetic Induction

91.96 mT

Coating

[NiCuNi] nickel

1.46 with VAT / pcs + price for transport

1.19 ZŁ net + 23% VAT / pcs

0.97 ZŁ net was the lowest price in the last 30 days

bulk discounts:

Need more?

price from 1 pcs
1.19 ZŁ
1.46 ZŁ
price from 226 pcs
1.07 ZŁ
1.32 ZŁ
price from 552 pcs
1.05 ZŁ
1.29 ZŁ

Not sure what to buy?

Contact us by phone +48 888 99 98 98 or drop us a message via request form the contact section.
Specifications as well as structure of a magnet can be analyzed using our our magnetic calculator.

Order by 14:00 and we’ll ship today!

MW 20x1.5 / N38 - cylindrical magnet

Specification/characteristics MW 20x1.5 / N38 - cylindrical magnet
properties
values
Cat. no.
010039
GTIN
5906301810384
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
20 mm [±0,1 mm]
Height
1.5 mm [±0,1 mm]
Weight
3.53 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
1.66 kg / 16.28 N
Magnetic Induction ~ ?
91.96 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets min. MW 20x1.5 / N38 are magnets made of neodymium in a cylindrical shape. They are valued for their very strong magnetic properties, which exceed ordinary iron magnets. Thanks to their power, they are frequently used in products that need strong adhesion. The typical temperature resistance of these magnets is 80 degrees C, but for magnets in a cylindrical form, this temperature rises with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to enhance their resistance to corrosion. The cylindrical shape is also one of the most popular among neodymium magnets. The magnet named MW 20x1.5 / N38 and a magnetic force 1.66 kg weighs only 3.53 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, represent the strongest known material for magnet production. The technology of their production is complicated and includes melting special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets are made available for use in varied applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a coating of nickel to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, as well as in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of purchasing of cylindrical neodymium magnets, many companies offer such products. One of the suggested suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address can be found directly in the contact tab. It's always worth visit the website for the latest information and offers, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are useful in many applications, they can also constitute certain dangers. Due to their strong magnetic power, they can pull metallic objects with significant force, which can lead to crushing skin as well as other materials, especially hands. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, thus they are coated with a thin e.g., nickel layer. Generally, although they are handy, they should be handled with due caution.
Neodymium magnets, with the formula Nd2Fe14B, are at this time the strongest available magnets on the market. They are produced through a complicated sintering process, which involves melting special alloys of neodymium with additional metals and then shaping and thermal processing. Their powerful magnetic strength comes from the specific production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often coated with coatings, such as gold, to protect them from external factors and prolong their durability. High temperatures exceeding 130°C can cause a loss of their magnetic properties, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic strength.
A cylindrical neodymium magnet in classes N50 and N52 is a powerful and highly strong magnetic piece shaped like a cylinder, providing high force and broad usability. Very good price, fast shipping, stability and versatility.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their immense pulling force, neodymium magnets offer the following advantages:

  • They have constant strength, and over around ten years their attraction force decreases symbolically – ~1% (in testing),
  • They show strong resistance to demagnetization from external magnetic fields,
  • The use of a mirror-like gold surface provides a eye-catching finish,
  • They have exceptional magnetic induction on the surface of the magnet,
  • These magnets tolerate high temperatures, often exceeding 230°C, when properly designed (in relation to form),
  • The ability for accurate shaping as well as adjustment to individual needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which amplifies their functionality across industries,
  • Wide application in modern technologies – they find application in computer drives, electromechanical systems, diagnostic apparatus or even technologically developed systems,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to external force, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage and enhances its overall strength,
  • Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • They rust in a moist environment – during outdoor use, we recommend using moisture-resistant magnets, such as those made of plastic,
  • Limited ability to create precision features in the magnet – the use of a magnetic holder is recommended,
  • Possible threat linked to microscopic shards may arise, if ingested accidentally, which is significant in the protection of children. It should also be noted that miniature parts from these assemblies can hinder health screening after being swallowed,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Detachment force of the magnet in optimal conditionswhat it depends on?

The given holding capacity of the magnet represents the highest holding force, calculated under optimal conditions, namely:

  • using a steel plate with low carbon content, acting as a magnetic circuit closure
  • having a thickness of no less than 10 millimeters
  • with a refined outer layer
  • with no separation
  • with vertical force applied
  • under standard ambient temperature

Practical aspects of lifting capacity – factors

In practice, the holding capacity of a magnet is conditioned by these factors, arranged from the most important to the least relevant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on a smooth plate of suitable thickness, under perpendicular forces, whereas under attempts to slide the magnet the lifting capacity is smaller. In addition, even a small distance {between} the magnet’s surface and the plate lowers the load capacity.

Exercise Caution with Neodymium Magnets

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnetic are extremely fragile, resulting in their cracking.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Neodymium magnets can become demagnetized at high temperatures.

Under specific conditions, Neodymium magnets can lose their magnetism when subjected to high temperatures.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Strong fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

 Maintain neodymium magnets far from youngest children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Magnets will attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, as a serious injury may occur. Magnets, depending on their size, can even cut off a finger or there can be a severe pressure or a fracture.

Neodymium magnets are the strongest magnets ever created, and their power can surprise you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Warning!

To illustrate why neodymium magnets are so dangerous, see the article - How very dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98