tel: +48 888 99 98 98

neodymium magnets

We offer blue color magnetic Nd2Fe14B - our offer. Practically all "magnets" on our website are available for immediate purchase (check the list). See the magnet price list for more details check the magnet price list

Magnet for treasure hunters F400 GOLD

Where to buy strong neodymium magnet? Magnet holders in airtight and durable steel enclosure are perfect for use in challenging weather, including during snow and rain see...

magnetic holders

Magnetic holders can be applied to enhance production processes, underwater exploration, or finding meteors made of ore see more...

Shipping is shipped if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 20x1.5 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010039

GTIN: 5906301810384

5

Diameter Ø [±0,1 mm]

20 mm

Height [±0,1 mm]

1.5 mm

Weight

3.53 g

Magnetization Direction

↑ axial

Load capacity

1.66 kg / 16.28 N

Magnetic Induction

91.96 mT

Coating

[NiCuNi] nickel

1.46 with VAT / pcs + price for transport

1.19 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1.19 ZŁ
1.46 ZŁ
price from 226 pcs
1.07 ZŁ
1.32 ZŁ
price from 552 pcs
1.05 ZŁ
1.29 ZŁ

Want to negotiate?

Call us +48 888 99 98 98 if you prefer contact us via form the contact section.
Lifting power along with appearance of neodymium magnets can be checked using our force calculator.

Orders submitted before 14:00 will be dispatched today!

MW 20x1.5 / N38 - cylindrical magnet

Specification/characteristics MW 20x1.5 / N38 - cylindrical magnet
properties
values
Cat. no.
010039
GTIN
5906301810384
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
20 mm [±0,1 mm]
Height
1.5 mm [±0,1 mm]
Weight
3.53 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
1.66 kg / 16.28 N
Magnetic Induction ~ ?
91.96 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets i.e. MW 20x1.5 / N38 are magnets made of neodymium in a cylinder form. They are valued for their very strong magnetic properties, which outperform ordinary iron magnets. Thanks to their strength, they are frequently used in devices that need strong adhesion. The typical temperature resistance of such magnets is 80 degrees C, but for cylindrical magnets, this temperature increases with the growth of the magnet. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to enhance their durability to corrosion. The cylindrical shape is also one of the most popular among neodymium magnets. The magnet designated MW 20x1.5 / N38 with a magnetic force 1.66 kg has a weight of only 3.53 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, represent the strongest known material for magnet production. Their production process is complicated and includes sintering special neodymium alloys with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets become ready for use in varied applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a thin layer of nickel to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, and also in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of purchasing of cylindrical neodymium magnets, several enterprises offer such products. One of the recommended suppliers is our company Dhit, located in Ożarów Mazowiecki, the address is available directly in the contact tab. It's always worth visit the site for the latest information as well as promotions, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are very useful in various applications, they can also constitute certain dangers. Because of their significant magnetic power, they can attract metallic objects with significant force, which can lead to crushing skin as well as other surfaces, especially hands. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Moreover, neodymium magnets are prone to corrosion in humid environments, thus they are coated with a thin e.g., nickel layer. In short, although they are handy, they should be handled with due caution.
Neodymium magnets, with the formula Nd2Fe14B, are currently the strong magnets on the market. They are produced through a advanced sintering process, which involves fusing special alloys of neodymium with additional metals and then forming and heat treating. Their amazing magnetic strength comes from the exceptional production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often coated with coatings, such as nickel, to shield them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can result in a reduction of their magnetic properties, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may lose their magnetic strength.
A neodymium magnet with classification N50 and N52 is a powerful and strong magnetic product with the shape of a cylinder, featuring strong holding power and universal applicability. Competitive price, availability, durability and versatility.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their exceptional strength, neodymium magnets offer the following advantages:

  • Their power remains stable, and after around ten years, it drops only by ~1% (according to research),
  • They protect against demagnetization induced by external magnetic influence very well,
  • Because of the lustrous layer of nickel, the component looks aesthetically refined,
  • They possess significant magnetic force measurable at the magnet’s surface,
  • These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to build),
  • With the option for customized forming and precise design, these magnets can be produced in various shapes and sizes, greatly improving application potential,
  • Key role in advanced technical fields – they are used in data storage devices, electric drives, diagnostic apparatus along with high-tech tools,
  • Thanks to their power density, small magnets offer high magnetic performance, in miniature format,

Disadvantages of magnetic elements:

  • They may fracture when subjected to a heavy impact. If the magnets are exposed to physical collisions, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks , and at the same time reinforces its overall robustness,
  • Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
  • Due to corrosion risk in humid conditions, it is common to use sealed magnets made of rubber for outdoor use,
  • Limited ability to create precision features in the magnet – the use of a external casing is recommended,
  • Health risk related to magnet particles may arise, if ingested accidentally, which is important in the family environments. It should also be noted that miniature parts from these devices may interfere with diagnostics after being swallowed,
  • High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which may limit large-scale applications

Optimal lifting capacity of a neodymium magnetwhat contributes to it?

The given holding capacity of the magnet represents the highest holding force, calculated under optimal conditions, namely:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • with a thickness of minimum 10 mm
  • with a refined outer layer
  • in conditions of no clearance
  • in a perpendicular direction of force
  • at room temperature

Practical lifting capacity: influencing factors

The lifting capacity of a magnet depends on in practice key elements, ordered from most important to least significant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on plates with a smooth surface of optimal thickness, under perpendicular forces, in contrast under shearing force the load capacity is reduced by as much as 5 times. Moreover, even a small distance {between} the magnet and the plate decreases the load capacity.

Safety Guidelines with Neodymium Magnets

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets are not recommended for people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their power can surprise you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.

Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

 Maintain neodymium magnets far from children.

Neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Neodymium magnets can become demagnetized at high temperatures.

While Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Magnets made of neodymium are delicate and can easily crack as well as shatter.

Neodymium magnets are highly delicate, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.

If joining of neodymium magnets is not under control, then they may crumble and also crack. You can't move them to each other. At a distance less than 10 cm you should have them very firmly.

Caution!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98