MW 20x1.5 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010039
GTIN: 5906301810384
Diameter Ø [±0,1 mm]
20 mm
Height [±0,1 mm]
1.5 mm
Weight
3.53 g
Magnetization Direction
↑ axial
Load capacity
1.66 kg / 16.28 N
Magnetic Induction
91.96 mT
Coating
[NiCuNi] nickel
1.46 ZŁ with VAT / pcs + price for transport
1.19 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to negotiate?
Call us
+48 888 99 98 98
if you prefer contact us via
form
the contact section.
Lifting power along with appearance of neodymium magnets can be checked using our
force calculator.
Orders submitted before 14:00 will be dispatched today!
MW 20x1.5 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, although neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a thin layer of nickel to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.
In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, and also in water or oil. Additionally, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often coated with coatings, such as nickel, to shield them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can result in a reduction of their magnetic properties, although there are particular types of neodymium magnets that can withstand temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic conditions, basic conditions, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may lose their magnetic strength.
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their exceptional strength, neodymium magnets offer the following advantages:
- Their power remains stable, and after around ten years, it drops only by ~1% (according to research),
- They protect against demagnetization induced by external magnetic influence very well,
- Because of the lustrous layer of nickel, the component looks aesthetically refined,
- They possess significant magnetic force measurable at the magnet’s surface,
- These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to build),
- With the option for customized forming and precise design, these magnets can be produced in various shapes and sizes, greatly improving application potential,
- Key role in advanced technical fields – they are used in data storage devices, electric drives, diagnostic apparatus along with high-tech tools,
- Thanks to their power density, small magnets offer high magnetic performance, in miniature format,
Disadvantages of magnetic elements:
- They may fracture when subjected to a heavy impact. If the magnets are exposed to physical collisions, they should be placed in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from cracks , and at the same time reinforces its overall robustness,
- Magnets lose pulling force when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Due to corrosion risk in humid conditions, it is common to use sealed magnets made of rubber for outdoor use,
- Limited ability to create precision features in the magnet – the use of a external casing is recommended,
- Health risk related to magnet particles may arise, if ingested accidentally, which is important in the family environments. It should also be noted that miniature parts from these devices may interfere with diagnostics after being swallowed,
- High unit cost – neodymium magnets are more expensive than other types of magnets (e.g., ferrite), which may limit large-scale applications
Optimal lifting capacity of a neodymium magnet – what contributes to it?
The given holding capacity of the magnet represents the highest holding force, calculated under optimal conditions, namely:
- with the use of low-carbon steel plate acting as a magnetic yoke
- with a thickness of minimum 10 mm
- with a refined outer layer
- in conditions of no clearance
- in a perpendicular direction of force
- at room temperature
Practical lifting capacity: influencing factors
The lifting capacity of a magnet depends on in practice key elements, ordered from most important to least significant:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was performed on plates with a smooth surface of optimal thickness, under perpendicular forces, in contrast under shearing force the load capacity is reduced by as much as 5 times. Moreover, even a small distance {between} the magnet and the plate decreases the load capacity.
Safety Guidelines with Neodymium Magnets
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Neodymium magnets are not recommended for people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their power can surprise you.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.
You should maintain neodymium magnets at a safe distance from the wallet, computer, and TV.
Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Maintain neodymium magnets far from children.
Neodymium magnets are not toys. Do not allow children to play with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.
Neodymium magnets can become demagnetized at high temperatures.
While Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Magnets made of neodymium are delicate and can easily crack as well as shatter.
Neodymium magnets are highly delicate, and by joining them in an uncontrolled manner, they will crack. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant swellings.
If joining of neodymium magnets is not under control, then they may crumble and also crack. You can't move them to each other. At a distance less than 10 cm you should have them very firmly.
Caution!
Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.