tel: +48 22 499 98 98

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our store's offer. All magnesy neodymowe on our website are in stock for immediate delivery (see the list). See the magnet pricing for more details check the magnet price list

Magnet for fishing F400 GOLD

Where to buy strong neodymium magnet? Holders with magnets in airtight, solid steel casing are ideally suited for use in difficult climate conditions, including snow and rain more...

magnetic holders

Holders with magnets can be applied to facilitate production, underwater discoveries, or locating meteorites from gold see...

We promise to ship ordered magnets on the same day by 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 20x1.5 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010039

GTIN: 5906301810384

5

Diameter Ø [±0,1 mm]

20 mm

Height [±0,1 mm]

1.5 mm

Weight

3.53 g

Magnetization Direction

↑ axial

Load capacity

1.66 kg / 16.28 N

Magnetic Induction

91.96 mT

Coating

[NiCuNi] nickel

1.19 with VAT / pcs + price for transport

0.97 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
0.97 ZŁ
1.19 ZŁ
price from 226 pcs
0.87 ZŁ
1.07 ZŁ
price from 552 pcs
0.85 ZŁ
1.05 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MW 20x1.5 / N38 - cylindrical magnet

Specification/characteristics MW 20x1.5 / N38 - cylindrical magnet
properties
values
Cat. no.
010039
GTIN
5906301810384
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
20 mm [±0,1 mm]
Height
1.5 mm [±0,1 mm]
Weight
3.53 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
1.66 kg / 16.28 N
Magnetic Induction ~ ?
91.96 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets min. MW 20x1.5 / N38 are magnets created of neodymium in a cylindrical shape. They are known for their very strong magnetic properties, which outperform traditional iron magnets. Because of their strength, they are often employed in products that need strong adhesion. The typical temperature resistance of such magnets is 80 degrees C, but for cylindrical magnets, this temperature rises with the growth of the magnet. Moreover, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to increase their durability to corrosion. The shape of a cylinder is also very popular among neodymium magnets. The magnet with the designation MW 20x1.5 / N38 with a magnetic lifting capacity of 1.66 kg weighs only 3.53 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, represent the strongest known material for magnet production. The technology of their production is complicated and includes melting special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is part of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a coating of gold-nickel to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, and also in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
Regarding the purchase of cylindrical neodymium magnets, many companies offer such products. One of the suggested suppliers is our company Dhit, located in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to visit the website for the current information and offers, and before visiting, please call.
Although, cylindrical neodymium magnets are practical in many applications, they can also constitute certain dangers. Because of their significant magnetic power, they can attract metallic objects with significant force, which can lead to crushing skin or other surfaces, especially hands. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Moreover, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin protective layer. In short, although they are very useful, they should be handled carefully.
Neodymium magnets, with the formula Nd2Fe14B, are currently the very strong magnets on the market. They are produced through a complicated sintering process, which involves melting special alloys of neodymium with other metals and then shaping and thermal processing. Their unmatched magnetic strength comes from the specific production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in conditions of high humidity. Therefore, they are often coated with thin coatings, such as gold, to preserve them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can cause a loss of their magnetic properties, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may forfeit their magnetic strength.

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from immense power, neodymium magnets have the following advantages:

  • They do not lose strength over time - after approximately 10 years, their power decreases by only ~1% (theoretically),
  • They protect against demagnetization caused by external magnetic field extremely well,
  • In other words, thanks to the glossy nickel, gold, or silver finish, the element gains an visually attractive appearance,
  • They have exceptionally high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C and above...
  • Thanks to the flexibility in shaping or the ability to adapt to specific requirements – neodymium magnets can be produced in various forms and dimensions, which amplifies their universality in usage.
  • Wide application in the industry of new technologies – are used in HDD drives, electric motors, medical equipment or other advanced devices.

Disadvantages of neodymium magnets:

  • They are fragile when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • High temperatures can reduce the power of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent loss in strength (although it is dependent on the shape and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
  • Due to their susceptibility to corrosion in a humid environment, we suggest using waterproof magnets made of rubber, plastic, or other moisture-resistant materials when using them outdoors,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Potential hazard associated with microscopic parts of magnets pose a threat, if swallowed, which is crucial in the context of child safety. Furthermore, tiny parts of these products can hinder the diagnostic process after entering the body.

Precautions

Neodymium magnetic are noted for their fragility, which can cause them to crumble.

Neodymium magnetic are extremely delicate, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.

Neodymium magnets are the strongest magnets ever invented. Their strength can shock you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

Do not bring neodymium magnets close to GPS and smartphones.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

 Keep neodymium magnets away from youngest children.

Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Neodymium magnets can become demagnetized at high temperatures.

Despite the general resilience of magnets, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Neodymium magnets jump and touch each other mutually within a radius of several to almost 10 cm from each other.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Caution!

To raise awareness of why neodymium magnets are so dangerous, read the article titled How very dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98