e-mail: bok@dhit.pl

neodymium magnets

We offer red color magnetic Nd2Fe14B - our offer. Practically all magnesy neodymowe in our store are in stock for immediate delivery (see the list). Check out the magnet pricing for more details see the magnet price list

Magnet for fishing F200 GOLD

Where to purchase very strong magnet? Magnetic holders in airtight, solid enclosure are ideally suited for use in difficult, demanding weather, including during rain and snow read...

magnets with holders

Holders with magnets can be applied to facilitate production processes, exploring underwater areas, or finding space rocks from gold more...

Enjoy shipping of your order on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 18.9x10 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010036

GTIN: 5906301810353

5

Diameter Ø [±0,1 mm]

18.9 mm

Height [±0,1 mm]

10 mm

Weight

21.04 g

Magnetization Direction

→ diametrical

Load capacity

10.45 kg / 102.48 N

Magnetic Induction

450.35 mT

Coating

[NiCuNi] nickel

11.07 with VAT / pcs + price for transport

9.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
9.00 ZŁ
11.07 ZŁ
price from 67 pcs
8.46 ZŁ
10.41 ZŁ
price from 278 pcs
7.92 ZŁ
9.74 ZŁ

Need help making a decision?

Give us a call +48 888 99 98 98 if you prefer send us a note through inquiry form the contact form page.
Strength as well as form of magnetic components can be reviewed on our magnetic calculator.

Order by 14:00 and we’ll ship today!

MW 18.9x10 / N38 - cylindrical magnet

Specification/characteristics MW 18.9x10 / N38 - cylindrical magnet
properties
values
Cat. no.
010036
GTIN
5906301810353
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
18.9 mm [±0,1 mm]
Height
10 mm [±0,1 mm]
Weight
21.04 g [±0,1 mm]
Magnetization Direction
→ diametrical
Load capacity ~ ?
10.45 kg / 102.48 N
Magnetic Induction ~ ?
450.35 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Cylindrical Neodymium Magnets i.e. MW 18.9x10 / N38 are magnets made of neodymium in a cylinder form. They are known for their very strong magnetic properties, which exceed ordinary iron magnets. Because of their power, they are often used in devices that require powerful holding. The standard temperature resistance of such magnets is 80°C, but for magnets in a cylindrical form, this temperature rises with the growth of the magnet. Moreover, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to enhance their durability to corrosion. The shape of a cylinder is as well one of the most popular among neodymium magnets. The magnet with the designation MW 18.9x10 / N38 with a magnetic strength 10.45 kg has a weight of only 21.04 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, are the strongest known material for magnet production. Their production process is complicated and includes melting special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets are made available for use in many applications, including electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. Therefore, they are coated with a coating of gold-nickel to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or where solvents are present, as well as in water or oil. Additionally, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of purchasing of cylindrical neodymium magnets, several enterprises offer such products. One of the recommended suppliers is our company Dhit, located in Ożarów Mazowiecki, the address can be found directly in the contact tab. It is recommended to check the site for the latest information and offers, and before visiting, please call.
Due to their power, cylindrical neodymium magnets are practical in various applications, they can also constitute certain dangers. Due to their strong magnetic power, they can pull metallic objects with significant force, which can lead to crushing skin or other materials, especially hands. Do not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin protective layer. Generally, although they are very useful, one should handle them carefully.
Neodymium magnets, with the formula Nd2Fe14B, are presently the strongest available magnets on the market. They are produced through a advanced sintering process, which involves fusing special alloys of neodymium with other metals and then forming and heat treating. Their unmatched magnetic strength comes from the specific production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often coated with thin coatings, such as gold, to preserve them from external factors and extend their lifespan. Temperatures exceeding 130°C can cause a reduction of their magnetic strength, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic conditions, basic environments, organic or solvent environments, unless they are properly protected. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may forfeit their magnetic strength.
A cylindrical magnet of class N52 and N50 is a powerful and highly strong magnetic piece designed as a cylinder, providing high force and broad usability. Attractive price, availability, durability and multi-functionality.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their immense pulling force, neodymium magnets offer the following advantages:

  • They do not lose their strength nearly ten years – the loss of strength is only ~1% (based on measurements),
  • They are highly resistant to demagnetization caused by external field interference,
  • The use of a polished nickel surface provides a refined finish,
  • They exhibit elevated levels of magnetic induction near the outer area of the magnet,
  • They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
  • The ability for custom shaping and adaptation to individual needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which enhances their versatility in applications,
  • Significant impact in cutting-edge sectors – they are used in HDDs, rotating machines, medical equipment along with sophisticated instruments,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in tiny dimensions, which makes them ideal in miniature devices

Disadvantages of rare earth magnets:

  • They are prone to breaking when subjected to a powerful impact. If the magnets are exposed to shocks, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage while also increases its overall strength,
  • High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on form). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of plastic for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing threads directly in the magnet,
  • Potential hazard due to small fragments may arise, especially if swallowed, which is significant in the context of child safety. Moreover, tiny components from these assemblies might complicate medical imaging once in the system,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Exercise Caution with Neodymium Magnets

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

In the situation of placing a finger in the path of a neodymium magnet, in that situation, a cut or a fracture may occur.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can shock you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

  Neodymium magnets should not be in the vicinity youngest children.

Not all neodymium magnets are toys, so do not let children play with them. In the case of small magnets, they can be swallowed and cause choking. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.

Neodymium magnets are fragile and can easily crack and get damaged.

Magnets made of neodymium are fragile and will crack if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. At the moment of connection between the magnets, small sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Be careful!

To raise awareness of why neodymium magnets are so dangerous, read the article titled How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98