MW 18.9x10 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010036
GTIN: 5906301810353
Diameter Ø [±0,1 mm]
18.9 mm
Height [±0,1 mm]
10 mm
Weight
21.04 g
Magnetization Direction
→ diametrical
Load capacity
10.45 kg / 102.48 N
Magnetic Induction
450.35 mT
Coating
[NiCuNi] nickel
11.07 ZŁ with VAT / pcs + price for transport
9.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Not sure where to buy?
Call us now
+48 22 499 98 98
alternatively contact us by means of
our online form
our website.
Force and form of magnetic components can be calculated on our
power calculator.
Same-day processing for orders placed before 14:00.
MW 18.9x10 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, even though neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a thin layer of gold-nickel to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires special caution during their handling. For this reason, any mechanical processing should be done before they are magnetized.
In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, and also in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often coated with coatings, such as epoxy, to protect them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can cause a reduction of their magnetic properties, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in wet conditions, oil, or in an atmosphere containing hydrogen, as they may lose their magnetic strength.
Advantages as well as disadvantages of neodymium magnets NdFeB.
In addition to their remarkable field intensity, neodymium magnets offer the following advantages:
- Their power is maintained, and after approximately ten years, it drops only by ~1% (theoretically),
- They show strong resistance to demagnetization from outside magnetic sources,
- Because of the brilliant layer of nickel, the component looks visually appealing,
- They possess intense magnetic force measurable at the magnet’s surface,
- They are suitable for high-temperature applications, operating effectively at 230°C+ due to advanced heat resistance and form-specific properties,
- With the option for tailored forming and personalized design, these magnets can be produced in various shapes and sizes, greatly improving application potential,
- Important function in new technology industries – they find application in computer drives, rotating machines, clinical machines or even high-tech tools,
- Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in compact dimensions, which makes them useful in small systems
Disadvantages of magnetic elements:
- They can break when subjected to a sudden impact. If the magnets are exposed to external force, it is suggested to place them in a protective case. The steel housing, in the form of a holder, protects the magnet from cracks while also reinforces its overall resistance,
- High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a wet environment. For outdoor use, we recommend using sealed magnets, such as those made of plastic,
- Limited ability to create complex details in the magnet – the use of a external casing is recommended,
- Potential hazard related to magnet particles may arise, if ingested accidentally, which is significant in the health of young users. Additionally, minuscule fragments from these products might interfere with diagnostics after being swallowed,
- Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications
Optimal lifting capacity of a neodymium magnet – what it depends on?
The given holding capacity of the magnet represents the highest holding force, calculated under optimal conditions, that is:
- with the use of low-carbon steel plate acting as a magnetic yoke
- with a thickness of minimum 10 mm
- with a smooth surface
- with no separation
- in a perpendicular direction of force
- under standard ambient temperature
Magnet lifting force in use – key factors
In practice, the holding capacity of a magnet is affected by these factors, from crucial to less important:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was determined by applying a smooth steel plate of suitable thickness (min. 20 mm), under vertically applied force, in contrast under attempts to slide the magnet the load capacity is reduced by as much as 5 times. Additionally, even a minimal clearance {between} the magnet’s surface and the plate decreases the load capacity.
Exercise Caution with Neodymium Magnets
Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can shock you.
To handle magnets properly, it is best to familiarize yourself with our information beforehand. This will help you avoid significant harm to your body and the magnets themselves.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium Magnets can attract to each other due to their immense internal force, causing the skin and other body parts to get pinched and resulting in significant injuries.
Magnets will bounce and contact together within a distance of several to almost 10 cm from each other.
Neodymium magnets can demagnetize at high temperatures.
Despite the general resilience of magnets, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Avoid bringing neodymium magnets close to a phone or GPS.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Neodymium magnetic are extremely fragile, resulting in breaking.
Neodymium magnets are delicate as well as will shatter if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Maintain neodymium magnets far from children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Keep neodymium magnets away from the wallet, computer, and TV.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Be careful!
To raise awareness of why neodymium magnets are so dangerous, see the article titled How very dangerous are powerful neodymium magnets?.
