e-mail: bok@dhit.pl

neodymium magnets

We offer blue color magnets Nd2Fe14B - our proposal. Practically all "neodymium magnets" on our website are in stock for immediate purchase (see the list). Check out the magnet price list for more details check the magnet price list

Magnets for water searching F200 GOLD

Where to buy very strong magnet? Magnetic holders in airtight, solid steel enclosure are ideally suited for use in difficult, demanding climate conditions, including in the rain and snow more information...

magnetic holders

Magnetic holders can be applied to enhance production processes, exploring underwater areas, or finding meteors from gold check...

Shipping is shipped on the same day before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MP 20x5x27 / N38 - ring magnet

ring magnet

Catalog no 030185

GTIN: 5906301812029

5

Diameter [±0,1 mm]

20 mm

internal diameter Ø [±0,1 mm]

5 mm

Height [±0,1 mm]

27 mm

Weight

95.43 g

Magnetization Direction

↑ axial

Load capacity

7.7 kg / 75.51 N

Magnetic Induction

34.79 mT

Coating

[NiCuNi] nickel

33.00 with VAT / pcs + price for transport

26.83 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
26.83 ZŁ
33.00 ZŁ
price from 23 pcs
25.22 ZŁ
31.02 ZŁ
price from 82 pcs
23.61 ZŁ
29.04 ZŁ

Want to negotiate the price?

Call us +48 22 499 98 98 or write via form on the contact page. Test the magnet's power with our power calculator.

Orders placed by 14:00 are shipped the same day.

MP 20x5x27 / N38 - ring magnet

Specification/characteristics MP 20x5x27 / N38 - ring magnet
properties
values
Cat. no.
030185
GTIN
5906301812029
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter
20 mm [±0,1 mm]
internal diameter Ø
5 mm [±0,1 mm]
Height
27 mm [±0,1 mm]
Weight
95.43 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
7.7 kg / 75.51 N
Magnetic Induction ~ ?
34.79 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Due to unique properties, neodymium magnet MP 20x5x27 / N38 in a ring form finds extensive use in various industries. Thanks to a powerful magnetic field of 7.7 kg, which can be described as strength, they are extremely useful in applications that require high magnetic power in a compact space. Applications of MP 20x5x27 / N38 magnets include electric motors, generating systems, sound devices, and several other devices that use magnets for generating motion or storing energy. Despite their significant strength, they have a comparatively low weight of 95.43 grams, which makes them more convenient to use compared to bulkier alternatives.
Ring magnets work due to their atomic structure. In the production process, neodymium atoms are arranged appropriately, which allows for the creation of a concentrated magnetic field in a specific direction. This field is ideal for applications in systems requiring motion control. Moreover, ring magnets are resistant to demagnetization.
They are used in various fields of technology and industry, such as production of electronic devices, such as speakers and electric motors, the automotive industry, e.g., in the construction of electric motors, and medical equipment, e.g., in scanning devices. Their ability to work in high temperatures and precise magnetic field control makes them ideal for technologically advanced applications.
Their uniqueness comes from extraordinary pulling power, ability to work in extreme conditions, precise control of the magnetic field. Thanks to their ring shape allows for effective use in devices such as motors or speakers. Moreover, these magnets are more durable than traditional ferrite magnets, making them an ideal choice in the automotive, electronics, and medical industries.
Ring magnets perform excellently across a wide range of temperatures. They do not lose their magnetic properties, as long as the temperature does not exceed the Curie point. Compared to other types of magnets, ring magnets show greater resistance to demagnetization. Because of this, they are ideal for applications in the automotive industry, robotics, and devices requiring operation in changing or extreme environmental conditions.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from immense power, neodymium magnets have the following advantages:

  • They do not lose their power (of the magnet). After about 10 years, their power decreases by only ~1% (theoretically),
  • They are highly resistant to demagnetization by external magnetic sources,
  • In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
  • They exhibit extremely high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C and above...
  • Due to the option of accurate forming or adaptation to individual needs – neodymium magnets can be produced in many variants of shapes or sizes, which amplifies their universality in usage.
  • Wide application in the industry of new technologies – are used in computer drives, electric motors, medical equipment or various technologically advanced devices.

Disadvantages of neodymium magnets:

  • They can break when subjected to a strong impact. If the magnets are exposed to impacts, we recommend using magnets in a protective case. The steel housing in the form of a holder protects the magnet from impacts, and at the same time increases its overall strength,
  • High temperatures can reduce the power of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent loss in strength (although it is dependent on the shape and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
  • They rust in a humid environment. For outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • The use of a cover or a magnetic holder is recommended due to the limited possibilities of manufacturing threads or complex shapes in the magnet
  • Potential hazard to health from tiny fragments of magnets pose a threat, if swallowed, which is crucial in the context of children's health. It's also worth noting that miniscule components of these magnets have the potential to hinder the diagnostic process in case of swallowing.

Be Cautious with Neodymium Magnets

Neodymium magnets can demagnetize at high temperatures.

Even though magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Keep neodymium magnets as far away as possible from GPS and smartphones.

Neodymium magnets produce strong magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Keep neodymium magnets away from TV, wallet, and computer HDD.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Magnets made of neodymium are extremely delicate, they easily crack and can become damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Keep neodymium magnets away from people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

  Magnets are not toys, children should not play with them.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Dust and powder from neodymium magnets are highly flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Magnets may crack or alternatively crumble with careless connecting to each other. You can't approach them to each other. At a distance less than 10 cm you should hold them very strongly.

Neodymium magnets are the strongest magnets ever invented. Their strength can surprise you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Safety rules!

To show why neodymium magnets are so dangerous, read the article - How dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98