UI 45x13x6 [Z323] / N38 - badge holder
badge holder
Catalog no 150210
GTIN: 5906301813576
length [±0,1 mm]
45 mm
Width [±0,1 mm]
13 mm
Height [±0,1 mm]
6 mm
Weight
0.15 g
Load capacity
1.75 kg / 17.16 N
2.40 ZŁ with VAT / pcs + price for transport
1.950 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to talk magnets?
Call us
+48 22 499 98 98
otherwise let us know using
form
the contact section.
Parameters along with shape of a neodymium magnet can be estimated with our
power calculator.
Order by 14:00 and we’ll ship today!
UI 45x13x6 [Z323] / N38 - badge holder
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Besides their stability, neodymium magnets are valued for these benefits:
- They have stable power, and over more than ten years their performance decreases symbolically – ~1% (according to theory),
- They protect against demagnetization induced by ambient magnetic influence very well,
- In other words, due to the shiny nickel coating, the magnet obtains an stylish appearance,
- They possess strong magnetic force measurable at the magnet’s surface,
- These magnets tolerate elevated temperatures, often exceeding 230°C, when properly designed (in relation to build),
- Thanks to the possibility in shaping and the capability to adapt to unique requirements, neodymium magnets can be created in different geometries, which broadens their application range,
- Important function in new technology industries – they find application in HDDs, electric drives, healthcare devices as well as high-tech tools,
- Compactness – despite their small size, they provide high effectiveness, making them ideal for precision applications
Disadvantages of NdFeB magnets:
- They can break when subjected to a strong impact. If the magnets are exposed to external force, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from damage while also strengthens its overall strength,
- They lose magnetic force at high temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a humid environment – during outdoor use, we recommend using sealed magnets, such as those made of polymer,
- Using a cover – such as a magnetic holder – is advised due to the restrictions in manufacturing fine shapes directly in the magnet,
- Health risk from tiny pieces may arise, when consumed by mistake, which is crucial in the family environments. Moreover, small elements from these products can hinder health screening when ingested,
- Due to expensive raw materials, their cost is above average,
Detachment force of the magnet in optimal conditions – what it depends on?
The given strength of the magnet represents the optimal strength, determined in ideal conditions, that is:
- with the use of low-carbon steel plate acting as a magnetic yoke
- of a thickness of at least 10 mm
- with a polished side
- with zero air gap
- under perpendicular detachment force
- in normal thermal conditions
Lifting capacity in practice – influencing factors
The lifting capacity of a magnet depends on in practice key elements, according to their importance:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Holding force was checked on the plate surface of 20 mm thickness, when the force acted perpendicularly, however under parallel forces the load capacity is reduced by as much as fivefold. In addition, even a small distance {between} the magnet’s surface and the plate reduces the holding force.
Be Cautious with Neodymium Magnets
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
If the joining of neodymium magnets is not controlled, then they may crumble and also crack. You can't approach them to each other. At a distance less than 10 cm you should have them very strongly.
Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.
Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Dust and powder from neodymium magnets are highly flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Magnets made of neodymium are extremely fragile, resulting in their cracking.
Neodymium magnetic are extremely fragile, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.
Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can surprise you at first.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.
Neodymium magnets can demagnetize at high temperatures.
Under specific conditions, Neodymium magnets can lose their magnetism when subjected to high temperatures.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Never bring neodymium magnets close to a phone and GPS.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Warning!
To raise awareness of why neodymium magnets are so dangerous, read the article titled How very dangerous are very powerful neodymium magnets?.