e-mail: bok@dhit.pl

neodymium magnets

We offer red color magnets Nd2Fe14B - our proposal. All magnesy in our store are available for immediate delivery (see the list). Check out the magnet price list for more details see the magnet price list

Magnets for water searching F200 GOLD

Where to purchase very strong magnet? Holders with magnets in airtight and durable steel casing are ideally suited for use in variable and difficult weather conditions, including during snow and rain more information...

magnetic holders

Holders with magnets can be used to improve production processes, underwater exploration, or locating space rocks made of ore more information...

Enjoy delivery of your order if the order is placed before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 20x18 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010040

GTIN: 5906301810391

0

Diameter Ø [±0,1 mm]

20 mm

Height [±0,1 mm]

18 mm

Weight

42.41 g

Magnetization Direction

↑ axial

Load capacity

19.91 kg / 195.25 N

Magnetic Induction

541.64 mT

Coating

[NiCuNi] nickel

23.54 with VAT / pcs + price for transport

19.14 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
19.14 ZŁ
23.54 ZŁ
price from 40 pcs
17.99 ZŁ
22.13 ZŁ
price from 140 pcs
16.65 ZŁ
20.48 ZŁ

Want to negotiate?

Contact us by phone +48 22 499 98 98 or contact us using request form the contact form page.
Parameters along with shape of magnets can be reviewed with our online calculation tool.

Same-day processing for orders placed before 14:00.

MW 20x18 / N38 - cylindrical magnet

Specification/characteristics MW 20x18 / N38 - cylindrical magnet
properties
values
Cat. no.
010040
GTIN
5906301810391
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
20 mm [±0,1 mm]
Height
18 mm [±0,1 mm]
Weight
42.41 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
19.91 kg / 195.25 N
Magnetic Induction ~ ?
541.64 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets min. MW 20x18 / N38 are magnets made of neodymium in a cylindrical shape. They are valued for their very strong magnetic properties, which exceed ordinary ferrite magnets. Thanks to their power, they are often used in devices that need strong adhesion. The typical temperature resistance of such magnets is 80 degrees C, but for cylindrical magnets, this temperature increases with their height. Moreover, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to increase their resistance to corrosion. The shape of a cylinder is also very popular among neodymium magnets. The magnet with the designation MW 20x18 / N38 and a magnetic strength 19.91 kg weighs only 42.41 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, represent the strongest known material for magnet production. Their production process is complicated and includes melting special neodymium alloys along with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets become ready for use in varied applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is a component of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a thin layer of epoxy to increase their durability. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. They should not be used in acidic, basic, organic environments or in solvents, and also in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
Regarding the purchase of cylindrical neodymium magnets, several enterprises offer such products. One of the suggested suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address can be found directly in the contact tab. It's always worth check the website for the latest information as well as offers, and before visiting, please call.
Due to their power, cylindrical neodymium magnets are very practical in many applications, they can also constitute certain risk. Due to their significant magnetic power, they can pull metallic objects with uncontrolled force, which can lead to crushing skin and other materials, especially be careful with fingers. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can damage these devices in terms of magnetic recording. Furthermore, neodymium magnets are prone to corrosion in humid environments, therefore they are coated with a thin protective layer. Generally, although they are very useful, one should handle them carefully.
Neodymium magnets, with the formula neodymium-iron-boron, are at this time the strong magnets on the market. They are produced through a advanced sintering process, which involves fusing specific alloys of neodymium with additional metals and then forming and thermal processing. Their unmatched magnetic strength comes from the unique production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are sensitive to corrosion, especially in humid conditions. Therefore, they are often covered with coatings, such as silver, to protect them from external factors and extend their lifespan. High temperatures exceeding 130°C can cause a loss of their magnetic strength, although there are specific types of neodymium magnets that can tolerate temperatures up to 230°C.
As for risks, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may lose their magnetic properties.
A neodymium magnet N52 and N50 is a powerful and strong metallic component with the shape of a cylinder, providing high force and universal applicability. Very good price, fast shipping, resistance and multi-functionality.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their remarkable magnetic power, neodymium magnets offer the following advantages:

  • They do not lose their even over nearly ten years – the loss of lifting capacity is only ~1% (theoretically),
  • Their ability to resist magnetic interference from external fields is impressive,
  • In other words, due to the shiny nickel coating, the magnet obtains an professional appearance,
  • The outer field strength of the magnet shows remarkable magnetic properties,
  • Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
  • The ability for precise shaping as well as adaptation to custom needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which extends the scope of their use cases,
  • Wide application in cutting-edge sectors – they serve a purpose in HDDs, electromechanical systems, clinical machines or even sophisticated instruments,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in small dimensions, which makes them useful in miniature devices

Disadvantages of neodymium magnets:

  • They may fracture when subjected to a heavy impact. If the magnets are exposed to mechanical hits, it is advisable to use in a metal holder. The steel housing, in the form of a holder, protects the magnet from breakage and additionally enhances its overall resistance,
  • High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a moist environment. If exposed to rain, we recommend using sealed magnets, such as those made of polymer,
  • The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is difficult,
  • Safety concern linked to microscopic shards may arise, if ingested accidentally, which is significant in the family environments. Additionally, minuscule fragments from these products can disrupt scanning if inside the body,
  • Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications

Highest magnetic holding forcewhat affects it?

The given holding capacity of the magnet means the highest holding force, determined in ideal conditions, namely:

  • with the use of low-carbon steel plate acting as a magnetic yoke
  • of a thickness of at least 10 mm
  • with a polished side
  • with no separation
  • with vertical force applied
  • in normal thermal conditions

Magnet lifting force in use – key factors

Practical lifting force is dependent on elements, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was performed on a smooth plate of optimal thickness, under perpendicular forces, in contrast under shearing force the holding force is lower. Additionally, even a small distance {between} the magnet and the plate reduces the load capacity.

Safety Precautions

Neodymium magnets are the strongest magnets ever invented. Their strength can surprise you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Neodymium magnets can demagnetize at high temperatures.

Although magnets are generally resilient, their ability to retain their magnetic strength can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.

Never bring neodymium magnets close to a phone and GPS.

Neodymium magnets are a source of strong magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Keep neodymium magnets away from the wallet, computer, and TV.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Magnets will crack or crumble with uncontrolled joining to each other. You can't move them to each other. At a distance less than 10 cm you should have them very firmly.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

  Magnets are not toys, children should not play with them.

Neodymium magnets are not toys. You cannot allow them to become toys for children. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Neodymium magnets are especially delicate, which leads to damage.

Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Caution!

So that know how strong neodymium magnets are and why they are so dangerous, read the article - Dangerous very powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98