MW 20x18 / N38 - cylindrical magnet
cylindrical magnet
Catalog no 010040
GTIN: 5906301810391
Diameter Ø [±0,1 mm]
20 mm
Height [±0,1 mm]
18 mm
Weight
42.41 g
Magnetization Direction
↑ axial
Load capacity
19.91 kg / 195.25 N
Magnetic Induction
541.64 mT
Coating
[NiCuNi] nickel
23.54 ZŁ with VAT / pcs + price for transport
19.14 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Can't decide what to choose?
Call us now
+48 22 499 98 98
otherwise let us know by means of
our online form
the contact section.
Lifting power along with appearance of magnets can be calculated on our
online calculation tool.
Order by 14:00 and we’ll ship today!
MW 20x18 / N38 - cylindrical magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Moreover, although neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. Therefore, they are coated with a coating of silver to protect them from corrosion. Interestingly that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.
In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, and also in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in humid conditions. Therefore, they are often covered with thin coatings, such as epoxy, to protect them from external factors and prolong their durability. High temperatures exceeding 130°C can cause a deterioration of their magnetic strength, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for dangers, it is important to avoid using neodymium magnets in acidic environments, basic environments, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in wet conditions, oil, or in an environment containing hydrogen, as they may lose their magnetic strength.
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their tremendous pulling force, neodymium magnets offer the following advantages:
- Their magnetic field remains stable, and after approximately ten years, it drops only by ~1% (according to research),
- They show exceptional resistance to demagnetization from external magnetic fields,
- Because of the brilliant layer of gold, the component looks high-end,
- They have exceptional magnetic induction on the surface of the magnet,
- Thanks to their enhanced temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C or more,
- The ability for custom shaping as well as adjustment to custom needs – neodymium magnets can be manufactured in multiple variants of geometries, which enhances their versatility in applications,
- Significant impact in modern technologies – they are utilized in hard drives, electric motors, clinical machines or even technologically developed systems,
- Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in tiny dimensions, which allows for use in miniature devices
Disadvantages of neodymium magnets:
- They may fracture when subjected to a powerful impact. If the magnets are exposed to physical collisions, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time increases its overall robustness,
- They lose magnetic force at increased temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- Magnets exposed to damp air can oxidize. Therefore, for outdoor applications, we recommend waterproof types made of plastic,
- Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing holes directly in the magnet,
- Health risk from tiny pieces may arise, in case of ingestion, which is crucial in the context of child safety. Additionally, miniature parts from these assemblies might hinder health screening after being swallowed,
- In cases of large-volume purchasing, neodymium magnet cost may not be economically viable,
Maximum magnetic pulling force – what contributes to it?
The given holding capacity of the magnet represents the highest holding force, measured under optimal conditions, namely:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a refined outer layer
- with zero air gap
- in a perpendicular direction of force
- under standard ambient temperature
Determinants of lifting force in real conditions
The lifting capacity of a magnet is influenced by in practice key elements, ordered from most important to least significant:
- Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity testing was carried out on a smooth plate of suitable thickness, under perpendicular forces, whereas under parallel forces the load capacity is reduced by as much as 5 times. Additionally, even a minimal clearance {between} the magnet’s surface and the plate decreases the load capacity.
Exercise Caution with Neodymium Magnets
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets should not be near people with pacemakers.
In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Magnetic fields interfere with compasses and magnetometers used in navigation for air and sea transport, as well as internal compasses of smartphones and GPS devices.
Keep neodymium magnets far from youngest children.
Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
Magnets may crack or alternatively crumble with uncontrolled connecting to each other. You can't move them to each other. At a distance less than 10 cm you should have them extremely firmly.
Magnets made of neodymium are particularly delicate, which leads to their breakage.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. Despite being made of metal as well as coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.
Neodymium magnets are the most powerful magnets ever created, and their power can surprise you.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Keep neodymium magnets away from TV, wallet, and computer HDD.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.
Safety rules!
So you are aware of why neodymium magnets are so dangerous, read the article titled How very dangerous are very powerful neodymium magnets?.