MP 14x8/4x3 / N38 - ring magnet
ring magnet
Catalog no 030181
GTIN/EAN: 5906301811985
Diameter
14 mm [±0,1 mm]
internal diameter Ø
8/4 mm [±0,1 mm]
Height
3 mm [±0,1 mm]
Weight
3.18 g
Magnetization Direction
↑ axial
Load capacity
2.53 kg / 24.85 N
Magnetic Induction
244.11 mT / 2441 Gs
Coating
[NiCuNi] Nickel
2.47 ZŁ with VAT / pcs + price for transport
2.01 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Pick up the phone and ask
+48 22 499 98 98
or let us know using
request form
our website.
Strength along with structure of neodymium magnets can be estimated using our
online calculation tool.
Orders submitted before 14:00 will be dispatched today!
Physical properties - MP 14x8/4x3 / N38 - ring magnet
Specification / characteristics - MP 14x8/4x3 / N38 - ring magnet
| properties | values |
|---|---|
| Cat. no. | 030181 |
| GTIN/EAN | 5906301811985 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter | 14 mm [±0,1 mm] |
| internal diameter Ø | 8/4 mm [±0,1 mm] |
| Height | 3 mm [±0,1 mm] |
| Weight | 3.18 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 2.53 kg / 24.85 N |
| Magnetic Induction ~ ? | 244.11 mT / 2441 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical analysis of the product - report
Presented information are the result of a engineering simulation. Values are based on models for the material Nd2Fe14B. Actual conditions may differ. Please consider these data as a supplementary guide for designers.
Table 1: Static force (pull vs gap) - characteristics
MP 14x8/4x3 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
2121 Gs
212.1 mT
|
2.53 kg / 5.58 lbs
2530.0 g / 24.8 N
|
medium risk |
| 1 mm |
1927 Gs
192.7 mT
|
2.09 kg / 4.61 lbs
2090.1 g / 20.5 N
|
medium risk |
| 2 mm |
1676 Gs
167.6 mT
|
1.58 kg / 3.48 lbs
1579.6 g / 15.5 N
|
weak grip |
| 3 mm |
1410 Gs
141.0 mT
|
1.12 kg / 2.46 lbs
1117.9 g / 11.0 N
|
weak grip |
| 5 mm |
943 Gs
94.3 mT
|
0.50 kg / 1.10 lbs
500.1 g / 4.9 N
|
weak grip |
| 10 mm |
335 Gs
33.5 mT
|
0.06 kg / 0.14 lbs
63.3 g / 0.6 N
|
weak grip |
| 15 mm |
140 Gs
14.0 mT
|
0.01 kg / 0.02 lbs
11.1 g / 0.1 N
|
weak grip |
| 20 mm |
69 Gs
6.9 mT
|
0.00 kg / 0.01 lbs
2.7 g / 0.0 N
|
weak grip |
| 30 mm |
24 Gs
2.4 mT
|
0.00 kg / 0.00 lbs
0.3 g / 0.0 N
|
weak grip |
| 50 mm |
6 Gs
0.6 mT
|
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
weak grip |
Table 2: Sliding force (vertical surface)
MP 14x8/4x3 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
0.51 kg / 1.12 lbs
506.0 g / 5.0 N
|
| 1 mm | Stal (~0.2) |
0.42 kg / 0.92 lbs
418.0 g / 4.1 N
|
| 2 mm | Stal (~0.2) |
0.32 kg / 0.70 lbs
316.0 g / 3.1 N
|
| 3 mm | Stal (~0.2) |
0.22 kg / 0.49 lbs
224.0 g / 2.2 N
|
| 5 mm | Stal (~0.2) |
0.10 kg / 0.22 lbs
100.0 g / 1.0 N
|
| 10 mm | Stal (~0.2) |
0.01 kg / 0.03 lbs
12.0 g / 0.1 N
|
| 15 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
2.0 g / 0.0 N
|
| 20 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 30 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.00 lbs
0.0 g / 0.0 N
|
Table 3: Vertical assembly (sliding) - vertical pull
MP 14x8/4x3 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
0.76 kg / 1.67 lbs
759.0 g / 7.4 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
0.51 kg / 1.12 lbs
506.0 g / 5.0 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
0.25 kg / 0.56 lbs
253.0 g / 2.5 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
1.27 kg / 2.79 lbs
1265.0 g / 12.4 N
|
Table 4: Material efficiency (saturation) - sheet metal selection
MP 14x8/4x3 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.25 kg / 0.56 lbs
253.0 g / 2.5 N
|
| 1 mm |
|
0.63 kg / 1.39 lbs
632.5 g / 6.2 N
|
| 2 mm |
|
1.27 kg / 2.79 lbs
1265.0 g / 12.4 N
|
| 3 mm |
|
1.90 kg / 4.18 lbs
1897.5 g / 18.6 N
|
| 5 mm |
|
2.53 kg / 5.58 lbs
2530.0 g / 24.8 N
|
| 10 mm |
|
2.53 kg / 5.58 lbs
2530.0 g / 24.8 N
|
| 11 mm |
|
2.53 kg / 5.58 lbs
2530.0 g / 24.8 N
|
| 12 mm |
|
2.53 kg / 5.58 lbs
2530.0 g / 24.8 N
|
Table 5: Thermal resistance (material behavior) - thermal limit
MP 14x8/4x3 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
2.53 kg / 5.58 lbs
2530.0 g / 24.8 N
|
OK |
| 40 °C | -2.2% |
2.47 kg / 5.45 lbs
2474.3 g / 24.3 N
|
OK |
| 60 °C | -4.4% |
2.42 kg / 5.33 lbs
2418.7 g / 23.7 N
|
|
| 80 °C | -6.6% |
2.36 kg / 5.21 lbs
2363.0 g / 23.2 N
|
|
| 100 °C | -28.8% |
1.80 kg / 3.97 lbs
1801.4 g / 17.7 N
|
Table 6: Magnet-Magnet interaction (attraction) - field collision
MP 14x8/4x3 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Lateral Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
3.33 kg / 7.34 lbs
3 647 Gs
|
0.50 kg / 1.10 lbs
500 g / 4.9 N
|
N/A |
| 1 mm |
3.07 kg / 6.76 lbs
4 070 Gs
|
0.46 kg / 1.01 lbs
460 g / 4.5 N
|
2.76 kg / 6.09 lbs
~0 Gs
|
| 2 mm |
2.75 kg / 6.07 lbs
3 855 Gs
|
0.41 kg / 0.91 lbs
413 g / 4.0 N
|
2.48 kg / 5.46 lbs
~0 Gs
|
| 3 mm |
2.42 kg / 5.33 lbs
3 612 Gs
|
0.36 kg / 0.80 lbs
362 g / 3.6 N
|
2.17 kg / 4.79 lbs
~0 Gs
|
| 5 mm |
1.76 kg / 3.88 lbs
3 084 Gs
|
0.26 kg / 0.58 lbs
264 g / 2.6 N
|
1.59 kg / 3.50 lbs
~0 Gs
|
| 10 mm |
0.66 kg / 1.45 lbs
1 886 Gs
|
0.10 kg / 0.22 lbs
99 g / 1.0 N
|
0.59 kg / 1.31 lbs
~0 Gs
|
| 20 mm |
0.08 kg / 0.18 lbs
671 Gs
|
0.01 kg / 0.03 lbs
13 g / 0.1 N
|
0.08 kg / 0.17 lbs
~0 Gs
|
| 50 mm |
0.00 kg / 0.00 lbs
77 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 60 mm |
0.00 kg / 0.00 lbs
47 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 70 mm |
0.00 kg / 0.00 lbs
31 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 80 mm |
0.00 kg / 0.00 lbs
21 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 90 mm |
0.00 kg / 0.00 lbs
15 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
| 100 mm |
0.00 kg / 0.00 lbs
11 Gs
|
0.00 kg / 0.00 lbs
0 g / 0.0 N
|
0.00 kg / 0.00 lbs
~0 Gs
|
Table 7: Safety (HSE) (electronics) - precautionary measures
MP 14x8/4x3 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 5.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 4.5 cm |
| Mechanical watch | 20 Gs (2.0 mT) | 3.5 cm |
| Mobile device | 40 Gs (4.0 mT) | 2.5 cm |
| Remote | 50 Gs (5.0 mT) | 2.5 cm |
| Payment card | 400 Gs (40.0 mT) | 1.0 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 1.0 cm |
Table 8: Dynamics (cracking risk) - collision effects
MP 14x8/4x3 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
28.89 km/h
(8.02 m/s)
|
0.10 J | |
| 30 mm |
49.27 km/h
(13.69 m/s)
|
0.30 J | |
| 50 mm |
63.61 km/h
(17.67 m/s)
|
0.50 J | |
| 100 mm |
89.96 km/h
(24.99 m/s)
|
0.99 J |
Table 9: Anti-corrosion coating durability
MP 14x8/4x3 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Flux)
MP 14x8/4x3 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 3 101 Mx | 31.0 µWb |
| Pc Coefficient | 0.28 | Low (Flat) |
Table 11: Underwater work (magnet fishing)
MP 14x8/4x3 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 2.53 kg | Standard |
| Water (riverbed) |
2.90 kg
(+0.37 kg buoyancy gain)
|
+14.5% |
1. Vertical hold
*Warning: On a vertical wall, the magnet retains merely ~20% of its perpendicular strength.
2. Steel thickness impact
*Thin steel (e.g. 0.5mm PC case) drastically reduces the holding force.
3. Thermal stability
*For N38 grade, the max working temp is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.28
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Elemental analysis
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Environmental data
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
See also offers
Strengths as well as weaknesses of Nd2Fe14B magnets.
Strengths
- They have stable power, and over more than ten years their attraction force decreases symbolically – ~1% (according to theory),
- They are extremely resistant to demagnetization induced by external field influence,
- In other words, due to the reflective finish of nickel, the element gains a professional look,
- Magnets are distinguished by maximum magnetic induction on the outer layer,
- Made from properly selected components, these magnets show impressive resistance to high heat, enabling them to function (depending on their shape) at temperatures up to 230°C and above...
- Thanks to versatility in constructing and the ability to modify to individual projects,
- Wide application in modern industrial fields – they are utilized in data components, electric motors, precision medical tools, and multitasking production systems.
- Relatively small size with high pulling force – neodymium magnets offer impressive pulling force in compact dimensions, which makes them useful in compact constructions
Cons
- Susceptibility to cracking is one of their disadvantages. Upon strong impact they can break. We advise keeping them in a steel housing, which not only protects them against impacts but also raises their durability
- When exposed to high temperature, neodymium magnets suffer a drop in strength. Often, when the temperature exceeds 80°C, their strength decreases (depending on the size and shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- When exposed to humidity, magnets start to rust. For applications outside, it is recommended to use protective magnets, such as magnets in rubber or plastics, which secure oxidation as well as corrosion.
- Due to limitations in creating threads and complicated forms in magnets, we recommend using casing - magnetic mount.
- Health risk resulting from small fragments of magnets pose a threat, in case of ingestion, which gains importance in the context of child health protection. Furthermore, small components of these magnets are able to complicate diagnosis medical when they are in the body.
- Due to expensive raw materials, their price exceeds standard values,
Pull force analysis
Breakaway strength of the magnet in ideal conditions – what affects it?
- using a base made of high-permeability steel, acting as a circuit closing element
- whose thickness is min. 10 mm
- with a plane perfectly flat
- without any clearance between the magnet and steel
- for force applied at a right angle (in the magnet axis)
- at room temperature
Determinants of practical lifting force of a magnet
- Distance (betwixt the magnet and the metal), as even a microscopic distance (e.g. 0.5 mm) can cause a decrease in force by up to 50% (this also applies to paint, rust or dirt).
- Pull-off angle – note that the magnet holds strongest perpendicularly. Under sliding down, the capacity drops significantly, often to levels of 20-30% of the nominal value.
- Plate thickness – too thin sheet does not accept the full field, causing part of the power to be escaped to the other side.
- Material composition – not every steel reacts the same. Alloy additives worsen the attraction effect.
- Plate texture – smooth surfaces guarantee perfect abutment, which increases force. Rough surfaces weaken the grip.
- Thermal factor – hot environment weakens pulling force. Too high temperature can permanently damage the magnet.
Holding force was checked on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, whereas under shearing force the holding force is lower. Moreover, even a slight gap between the magnet’s surface and the plate reduces the load capacity.
H&S for magnets
Threat to electronics
Device Safety: Neodymium magnets can damage data carriers and delicate electronics (heart implants, hearing aids, mechanical watches).
Flammability
Powder created during cutting of magnets is combustible. Avoid drilling into magnets unless you are an expert.
Keep away from children
Neodymium magnets are not toys. Swallowing a few magnets may result in them attracting across intestines, which constitutes a severe health hazard and requires urgent medical intervention.
Eye protection
Watch out for shards. Magnets can fracture upon violent connection, ejecting sharp fragments into the air. We recommend safety glasses.
Powerful field
Before use, check safety instructions. Uncontrolled attraction can break the magnet or hurt your hand. Think ahead.
Crushing risk
Pinching hazard: The pulling power is so great that it can result in hematomas, pinching, and broken bones. Use thick gloves.
Precision electronics
GPS units and smartphones are extremely sensitive to magnetic fields. Close proximity with a strong magnet can ruin the sensors in your phone.
Danger to pacemakers
For implant holders: Strong magnetic fields affect medical devices. Keep minimum 30 cm distance or request help to work with the magnets.
Avoid contact if allergic
Warning for allergy sufferers: The nickel-copper-nickel coating contains nickel. If an allergic reaction happens, immediately stop working with magnets and use protective gear.
Heat sensitivity
Standard neodymium magnets (N-type) lose power when the temperature surpasses 80°C. This process is irreversible.
