MPL 30x5x5 / N38 - lamellar magnet
lamellar magnet
Catalog no 020448
GTIN: 5906301811923
length [±0,1 mm]
30 mm
Width [±0,1 mm]
5 mm
Height [±0,1 mm]
5 mm
Weight
5.63 g
Magnetization Direction
↑ axial
Load capacity
4.84 kg / 47.46 N
Magnetic Induction
446.27 mT
Coating
[NiCuNi] nickel
4.15 ZŁ with VAT / pcs + price for transport
3.37 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Want to talk magnets?
Pick up the phone and ask
+48 22 499 98 98
or get in touch through
contact form
the contact page.
Force and shape of magnets can be estimated on our
force calculator.
Orders submitted before 14:00 will be dispatched today!
MPL 30x5x5 / N38 - lamellar magnet
Magnetic properties of material N38
Physical properties of NdFeB
Shopping tips
Due to their power, flat magnets are commonly used in products that require exceptional adhesion.
Most common temperature resistance of flat magnets is 80 °C, but depending on the dimensions, this value can increase.
In addition, flat magnets commonly have special coatings applied to their surfaces, e.g. nickel, gold, or chrome, to increase their durability.
The magnet named MPL 30x5x5 / N38 and a magnetic force 4.84 kg which weighs just 5.63 grams, making it the perfect choice for applications requiring a flat shape.
Contact surface: Due to their flat shape, flat magnets ensure a larger contact surface with other components, which is beneficial in applications requiring a stronger magnetic connection.
Technology applications: They are often applied in different devices, e.g. sensors, stepper motors, or speakers, where the flat shape is important for their operation.
Mounting: Their flat shape simplifies mounting, particularly when there's a need to attach the magnet to another surface.
Design flexibility: The flat shape of the magnets allows creators greater flexibility in arranging them in devices, which can be more difficult with magnets of other shapes.
Stability: In some applications, the flat base of the flat magnet can provide better stability, minimizing the risk of shifting or rotating. However, one should remember that the optimal shape of the magnet is dependent on the specific project and requirements. In certain cases, other shapes, such as cylindrical or spherical, may be more appropriate.
Magnets have two poles: north (N) and south (S), which attract each other when they are oppositely oriented. Poles of the same kind, such as two north poles, act repelling on each other.
Thanks to this principle of operation, magnets are regularly used in magnetic technologies, such as motors, speakers, sensors, or magnetic locks. Neodymium magnets stand out with the highest power of attraction, making them indispensable for applications requiring strong magnetic fields. Moreover, the strength of a magnet depends on its size and the materials used.
It’s worth noting that extremely high temperatures, above the Curie point, cause a loss of magnetic properties in the magnet. The Curie temperature is specific to each type of magnet, meaning that once this temperature is exceeded, the magnet stops being magnetic. Interestingly, strong magnets can interfere with the operation of devices, such as navigational instruments, credit cards or medical equipment, like pacemakers. For this reason, it is important to avoid placing magnets near such devices.
Advantages as well as disadvantages of neodymium magnets NdFeB.
Besides their magnetic performance, neodymium magnets are valued for these benefits:
- Their magnetic field is durable, and after around ten years, it drops only by ~1% (theoretically),
- They are very resistant to demagnetization caused by external magnetic sources,
- The use of a decorative nickel surface provides a refined finish,
- The outer field strength of the magnet shows remarkable magnetic properties,
- These magnets tolerate elevated temperatures, often exceeding 230°C, when properly designed (in relation to profile),
- With the option for tailored forming and precise design, these magnets can be produced in various shapes and sizes, greatly improving engineering flexibility,
- Key role in new technology industries – they find application in data storage devices, electromechanical systems, medical equipment and technologically developed systems,
- Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in tiny dimensions, which makes them useful in small systems
Disadvantages of neodymium magnets:
- They are prone to breaking when subjected to a powerful impact. If the magnets are exposed to physical collisions, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from breakage while also reinforces its overall resistance,
- They lose field intensity at elevated temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
- They rust in a moist environment – during outdoor use, we recommend using encapsulated magnets, such as those made of rubber,
- Limited ability to create precision features in the magnet – the use of a external casing is recommended,
- Health risk due to small fragments may arise, in case of ingestion, which is significant in the health of young users. Furthermore, small elements from these assemblies can complicate medical imaging when ingested,
- In cases of mass production, neodymium magnet cost may not be economically viable,
Optimal lifting capacity of a neodymium magnet – what it depends on?
The given lifting capacity of the magnet corresponds to the maximum lifting force, determined in a perfect environment, specifically:
- with the use of low-carbon steel plate serving as a magnetic yoke
- with a thickness of minimum 10 mm
- with a polished side
- in conditions of no clearance
- under perpendicular detachment force
- at room temperature
Practical lifting capacity: influencing factors
In practice, the holding capacity of a magnet is conditioned by these factors, from crucial to less important:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was measured by applying a smooth steel plate of optimal thickness (min. 20 mm), under perpendicular detachment force, whereas under parallel forces the lifting capacity is smaller. Moreover, even a slight gap {between} the magnet and the plate decreases the lifting capacity.
Handle Neodymium Magnets Carefully
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.
Magnets attract each other within a distance of several to about 10 cm from each other. Remember not to put fingers between magnets or in their path when attract. Depending on how huge the neodymium magnets are, they can lead to a cut or a fracture.
Neodymium magnets are known for being fragile, which can cause them to shatter.
Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of connection between the magnets, small metal fragments can be dispersed in different directions.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their power can surprise you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Keep neodymium magnets as far away as possible from GPS and smartphones.
Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets can become demagnetized at high temperatures.
While Neodymium magnets can demagnetize at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.
Do not place neodymium magnets near a computer HDD, TV, and wallet.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
Keep neodymium magnets away from children.
Neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.
Safety precautions!
To raise awareness of why neodymium magnets are so dangerous, read the article titled How very dangerous are strong neodymium magnets?.