tel: +48 22 499 98 98

neodymium magnets

We offer red color magnets Nd2Fe14B - our offer. All "magnets" on our website are available for immediate purchase (check the list). Check out the magnet pricing for more details check the magnet price list

Magnets for fishing F400 GOLD

Where to buy very strong magnet? Magnetic holders in solid and airtight enclosure are perfect for use in variable and difficult weather conditions, including in the rain and snow more information...

magnetic holders

Holders with magnets can be applied to improve production processes, underwater exploration, or finding space rocks made of ore read...

We promise to ship your order if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 18x225 [2xM5] / N42 - magnetic separator

magnetic separator

Catalog no 130274

GTIN: 5906301812760

0

Diameter Ø [±0,1 mm]

18 mm

Height [±0,1 mm]

225 mm

Weight

0.01 g

498.15 with VAT / pcs + price for transport

405.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
405.00 ZŁ
498.15 ZŁ
price from 10 pcs
384.75 ZŁ
473.24 ZŁ
price from 15 pcs
364.50 ZŁ
448.34 ZŁ

Want to talk magnets?

Give us a call +48 22 499 98 98 otherwise let us know using inquiry form our website.
Lifting power as well as structure of magnets can be verified with our our magnetic calculator.

Orders placed before 14:00 will be shipped the same business day.

SM 18x225 [2xM5] / N42 - magnetic separator

Specification/characteristics SM 18x225 [2xM5] / N42 - magnetic separator
properties
values
Cat. no.
130274
GTIN
5906301812760
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
18 mm [±0,1 mm]
Height
225 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
coercivity bHc ?
860-955
kA/m
coercivity bHc ?
10.8-12.0
kOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The magnetic separator, namely the magnetic roller, uses the force of neodymium magnets, which are placed in a construction made of stainless steel usually AISI304. Due to this, it is possible to precisely segregate ferromagnetic particles from different substances. A key aspect of its operation is the use of repulsion of N and S poles of neodymium magnets, which allows magnetic substances to be attracted. The thickness of the magnet and its structure pitch determine the range and strength of the separator's operation.
Generally speaking, magnetic separators serve to extract ferromagnetic particles. If the cans are made from ferromagnetic materials, the separator will effectively segregate them. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the magnetic separator will not be effective.
Yes, magnetic rollers are employed in food production for the elimination of metallic contaminants, including iron fragments or iron dust. Our rollers are constructed from durable acid-resistant steel, EN 1.4301, approved for contact with food.
Magnetic rollers, otherwise cylindrical magnets, are used in food production, metal separation as well as waste processing. They help in removing iron dust during the process of separating metals from other wastes.
Our magnetic rollers are built with a neodymium magnet anchored in a tube of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar will be with M8 threaded openings, which enables quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of features, magnetic bars differ in terms of magnetic force lines, flux density and the area of operation of the magnetic field. We produce them in materials, N42 as well as N52.
Often it is believed that the stronger the magnet, the more effective. Nevertheless, the strength of the magnet's power is based on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of application and expected needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is thin, the magnetic force lines are short. By contrast, when the magnet is thick, the force lines will be longer and extend over a greater distance.
For constructing the casings of magnetic separators - rollers, most often stainless steel is employed, especially types AISI 316, AISI 316L, and AISI 304.
In a saltwater environment, type AISI 316 steel is highly recommended due to its excellent corrosion resistance.
Magnetic bars are characterized by their specific arrangement of poles and their ability to attract magnetic particles directly onto their surface, in contrast to other devices that may utilize complex filtration systems.
Technical designations and terms pertaining to magnetic separators comprise amongst others magnet pitch, polarity, and magnetic induction, as well as the steel type applied.
Magnetic induction for a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value near the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations below N27 or N25 suggest recycling that falls below the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. However, some of the downsides may involve higher cost compared to other types of magnets and the need for regular maintenance.
By ensuring proper maintenance of neodymium magnetic rollers, it’s worth they should be regularly cleaned, avoiding temperatures up to 80°C. The rollers feature waterproofing IP67, so if they are not sealed, the magnets inside can oxidize and weaken. Magnetic field measurements should be carried out every two years. Care should be taken, as it’s possible getting pinched. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could lead to problems with the magnetic rod seal and product contamination. The effective range of the roller is equal to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
Magnetic rollers are cylindrical neodymium magnets placed in a casing made of corrosion-resistant stainless steel, which are used to remove metal contaminants from bulk and granular materials. They are applied in industries such as food processing, ceramics, and recycling, where metal separation is crucial.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Apart from their notable magnetism, neodymium magnets have these key benefits:

  • They virtually do not lose power, because even after 10 years, the performance loss is only ~1% (in laboratory conditions),
  • They protect against demagnetization induced by external magnetic influence very well,
  • By applying a reflective layer of nickel, the element gains a modern look,
  • Magnetic induction on the surface of these magnets is impressively powerful,
  • These magnets tolerate extreme temperatures, often exceeding 230°C, when properly designed (in relation to form),
  • Thanks to the flexibility in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in various configurations, which increases their functional possibilities,
  • Significant impact in modern technologies – they are used in HDDs, rotating machines, diagnostic apparatus along with other advanced devices,
  • Relatively small size with high magnetic force – neodymium magnets offer strong power in small dimensions, which makes them useful in compact constructions

Disadvantages of magnetic elements:

  • They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to shocks, it is suggested to place them in a metal holder. The steel housing, in the form of a holder, protects the magnet from damage and strengthens its overall robustness,
  • They lose power at high temperatures. Most neodymium magnets experience permanent loss in strength when heated above 80°C (depending on the form and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to humidity can degrade. Therefore, for outdoor applications, we recommend waterproof types made of rubber,
  • The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is not feasible,
  • Potential hazard due to small fragments may arise, in case of ingestion, which is crucial in the protection of children. Furthermore, small elements from these magnets may complicate medical imaging once in the system,
  • In cases of tight budgets, neodymium magnet cost is a challenge,

Magnetic strength at its maximum – what contributes to it?

The given holding capacity of the magnet represents the highest holding force, measured under optimal conditions, namely:

  • with mild steel, serving as a magnetic flux conductor
  • with a thickness of minimum 10 mm
  • with a polished side
  • with no separation
  • under perpendicular detachment force
  • at room temperature

Key elements affecting lifting force

The lifting capacity of a magnet is influenced by in practice key elements, according to their importance:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was tested on a smooth steel plate of 20 mm thickness, when the force acted perpendicularly, in contrast under shearing force the holding force is lower. Additionally, even a small distance {between} the magnet and the plate reduces the holding force.

Handle with Care: Neodymium Magnets

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets can become demagnetized at high temperatures.

Even though magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Avoid contact with neodymium magnets if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are primarily characterized by their significant internal force. They attract to each other, and any object that comes in their way will be affected.

In the case of holding a finger in the path of a neodymium magnet, in such a case, a cut or even a fracture may occur.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnetic are highly susceptible to damage, resulting in breaking.

Neodymium magnetic are highly delicate, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can surprise you at first.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

 Keep neodymium magnets away from youngest children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Safety rules!

So that know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous strong neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98