SM 18x225 [2xM5] / N42 - magnetic separator
magnetic separator
Catalog no 130274
GTIN: 5906301812760
Diameter Ø [±0,1 mm]
18 mm
Height [±0,1 mm]
225 mm
Weight
0.01 g
498.15 ZŁ with VAT / pcs + price for transport
405.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need help making a decision?
Pick up the phone and ask
+48 888 99 98 98
if you prefer drop us a message by means of
contact form
our website.
Force along with form of magnets can be calculated on our
magnetic mass calculator.
Same-day shipping for orders placed before 14:00.
SM 18x225 [2xM5] / N42 - magnetic separator
Magnetic properties of material N42
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their immense pulling force, neodymium magnets offer the following advantages:
- Their strength is maintained, and after approximately ten years, it drops only by ~1% (according to research),
- They are extremely resistant to demagnetization caused by external field interference,
- The use of a polished silver surface provides a refined finish,
- They have very high magnetic induction on the surface of the magnet,
- With the right combination of compounds, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the design),
- The ability for accurate shaping or customization to specific needs – neodymium magnets can be manufactured in multiple variants of geometries, which extends the scope of their use cases,
- Significant impact in modern technologies – they are used in computer drives, electromechanical systems, diagnostic apparatus or even sophisticated instruments,
- Relatively small size with high magnetic force – neodymium magnets offer strong power in compact dimensions, which makes them ideal in small systems
Disadvantages of neodymium magnets:
- They are prone to breaking when subjected to a sudden impact. If the magnets are exposed to external force, they should be placed in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks while also strengthens its overall resistance,
- High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent loss in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- They rust in a wet environment, especially when used outside, we recommend using moisture-resistant magnets, such as those made of polymer,
- The use of a protective casing or external holder is recommended, since machining fine details in neodymium magnets is difficult,
- Possible threat related to magnet particles may arise, especially if swallowed, which is notable in the family environments. Moreover, small elements from these devices may hinder health screening when ingested,
- High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which may limit large-scale applications
Best holding force of the magnet in ideal parameters – what contributes to it?
The given lifting capacity of the magnet corresponds to the maximum lifting force, measured in ideal conditions, that is:
- with mild steel, serving as a magnetic flux conductor
- having a thickness of no less than 10 millimeters
- with a polished side
- with zero air gap
- under perpendicular detachment force
- under standard ambient temperature
Determinants of lifting force in real conditions
In practice, the holding capacity of a magnet is conditioned by the following aspects, from crucial to less important:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was determined by applying a steel plate with a smooth surface of suitable thickness (min. 20 mm), under vertically applied force, however under attempts to slide the magnet the load capacity is reduced by as much as 75%. Moreover, even a small distance {between} the magnet and the plate decreases the holding force.
Caution with Neodymium Magnets
Magnets made of neodymium are delicate as well as can easily break as well as shatter.
Neodymium magnetic are highly delicate, and by joining them in an uncontrolled manner, they will crumble. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
Neodymium magnets should not be near people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.
The magnet coating is made of nickel, so be cautious if you have an allergy.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. If the magnet is crushed into fine powder or dust, it becomes highly flammable.
Avoid bringing neodymium magnets close to a phone or GPS.
Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.
Keep neodymium magnets away from the wallet, computer, and TV.
Strong magnetic fields emitted by neodymium magnets can destroy magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
If you have a finger between or alternatively on the path of attracting magnets, there may be a serious cut or even a fracture.
Neodymium magnets can become demagnetized at high temperatures.
Although magnets are generally resilient, their ability to maintain their magnetic potency can be influenced by factors like the type of material used, the magnet's shape, and the intended purpose for which it is employed.
Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times more powerful, and their strength can shock you.
On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.
Magnets should not be treated as toys. Therefore, it is not recommended for youngest children to have access to them.
Not all neodymium magnets are toys, so do not let children play with them. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Pay attention!
To raise awareness of why neodymium magnets are so dangerous, read the article titled How dangerous are very powerful neodymium magnets?.
