e-mail: bok@dhit.pl

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our store's offer. Practically all magnesy on our website are available for immediate delivery (see the list). Check out the magnet price list for more details check the magnet price list

Magnet for treasure hunters F300 GOLD

Where to buy strong neodymium magnet? Magnet holders in airtight and durable steel casing are ideally suited for use in variable and difficult climate conditions, including during rain and snow check...

magnetic holders

Holders with magnets can be applied to improve production, underwater exploration, or locating meteors made of ore read...

We promise to ship ordered magnets on the same day before 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

SM 18x225 [2xM5] / N42 - magnetic separator

magnetic separator

Catalog no 130274

GTIN: 5906301812760

0

Diameter Ø [±0,1 mm]

18 mm

Height [±0,1 mm]

225 mm

Weight

0.01 g

498.15 with VAT / pcs + price for transport

405.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
405.00 ZŁ
498.15 ZŁ
price from 10 pcs
384.75 ZŁ
473.24 ZŁ
price from 15 pcs
364.50 ZŁ
448.34 ZŁ

Not sure what to buy?

Call us +48 888 99 98 98 if you prefer contact us via contact form through our site.
Specifications along with structure of magnets can be tested with our magnetic mass calculator.

Order by 14:00 and we’ll ship today!

SM 18x225 [2xM5] / N42 - magnetic separator

Specification/characteristics SM 18x225 [2xM5] / N42 - magnetic separator
properties
values
Cat. no.
130274
GTIN
5906301812760
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
18 mm [±0,1 mm]
Height
225 mm [±0,1 mm]
Weight
0.01 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N42

properties
values
units
remenance Br [Min. - Max.] ?
12.9-13.2
kGs
remenance Br [Min. - Max.] ?
1290-1320
T
coercivity bHc ?
10.8-12.0
kOe
coercivity bHc ?
860-955
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.] ?
40-42
BH max MGOe
energy density [Min. - Max.] ?
318-334
BH max KJ/m
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

The device roller magnetic is based on the use of neodymium magnets, placed in a casing made of stainless steel usually AISI304. Due to this, it is possible to effectively separate ferromagnetic elements from other materials. A key aspect of its operation is the repulsion of N and S poles of neodymium magnets, which allows magnetic substances to be attracted. The thickness of the embedded magnet and its structure pitch affect the range and strength of the separator's operation.
Generally speaking, magnetic separators are designed to segregate ferromagnetic elements. If the cans are made of ferromagnetic materials, a magnetic separator will be effective. However, if the cans are made of non-ferromagnetic materials, such as aluminum, the separator will not be able to separate them.
Yes, magnetic rollers find application in the food sector for the elimination of metallic contaminants, such as iron fragments or iron dust. Our rollers are built from durable acid-resistant steel, EN 1.4301, approved for use in food.
Magnetic rollers, otherwise magnetic separators, are used in metal separation, food production as well as waste processing. They help in removing iron dust in the course of the process of separating metals from other materials.
Our magnetic rollers are composed of a neodymium magnet embedded in a stainless steel tube cylinder of stainless steel with a wall thickness of 1mm.
From both sides of the magnetic bar can be with M8 threaded holes - 18 mm, allowing for quick installation in machines or magnetic filter drawers. A "blind" version is also possible in manual separators.
In terms of forces, magnetic bars differ in terms of magnetic force lines, flux density and the field of the magnetic field. We produce them in materials, N42 and N52.
Generally it is believed that the stronger the magnet, the more efficient it is. However, the strength of the magnet's power is dependent on the height of the used magnet and the quality of the material [N42] or [N52], as well as on the area of use and anticipated needs. The standard operating temperature of a magnetic bar is 80°C.
When the magnet is more flat, the magnetic force lines are short. On the other hand, when the magnet is thick, the force lines will be extended and reach further.
For creating the casings of magnetic separators - rollers, most often stainless steel is utilized, particularly types AISI 316, AISI 316L, and AISI 304.
In a salt water contact, type AISI 316 steel is recommended due to its outstanding anti-corrosion properties.
Magnetic bars stand out for their specific arrangement of poles and their ability to attract magnetic particles directly onto their surface, as opposed to other devices that may utilize complex filtration systems.
Technical designations and terms related to magnetic separators comprise among others polarity, magnetic induction, magnet pitch, as well as the type of steel used.
Magnetic induction for a roller is measured using a teslameter or a gaussmeter with a flat Hall-effect probe, aiming to find the highest magnetic field value near the magnetic pole. The outcome is checked in a value table - the lowest is N30. All designations below N27 or N25 suggest recycling that doesn't meet the standard - they are not suitable.
Neodymium magnetic bars offer many advantages, including a very strong magnetic field, the ability to capture even the tiniest metal particles, and durability. However, some of the downsides may involve the need for regular cleaning, higher cost, and potential installation challenges.
For proper maintenance of neodymium magnetic rollers, it’s worth they should be regularly cleaned, avoiding temperatures above 80 degrees. The rollers our rollers have waterproofing IP67, so if they are not sealed, the magnets inside can rust and lose their power. Testing of the rollers is recommended be carried out every two years. Care should be taken, as there is a risk of finger injury. If the protective tube is only 0.5 mm thick, it may wear out, which in turn could cause problems with the magnetic rod seal and product contamination. The range of the roller corresponds to its diameter: fi25mm gives an active range of about 25mm, while fi32 gives an active range of about 40mm.
A magnetic roller is a magnetic separator made from a neodymium magnet enclosed in a cylindrical stainless steel housing, used for separating ferromagnetic contaminants from raw materials. They are applied in industries such as food processing, ceramics, and recycling, where metal separation is crucial.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their magnetic capacity, neodymium magnets provide the following advantages:

  • Their power remains stable, and after approximately 10 years, it drops only by ~1% (according to research),
  • Their ability to resist magnetic interference from external fields is impressive,
  • The use of a polished gold surface provides a eye-catching finish,
  • They possess intense magnetic force measurable at the magnet’s surface,
  • These magnets tolerate elevated temperatures, often exceeding 230°C, when properly designed (in relation to form),
  • The ability for precise shaping or customization to custom needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which amplifies their functionality across industries,
  • Significant impact in modern technologies – they are utilized in HDDs, rotating machines, healthcare devices along with high-tech tools,
  • Thanks to their concentrated strength, small magnets offer high magnetic performance, with minimal size,

Disadvantages of magnetic elements:

  • They can break when subjected to a sudden impact. If the magnets are exposed to external force, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from damage and strengthens its overall resistance,
  • High temperatures may significantly reduce the field efficiency of neodymium magnets. Typically, above 80°C, they experience permanent decline in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a wet environment, especially when used outside, we recommend using waterproof magnets, such as those made of non-metallic materials,
  • Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing fine shapes directly in the magnet,
  • Safety concern related to magnet particles may arise, in case of ingestion, which is significant in the context of child safety. Moreover, miniature parts from these assemblies may interfere with diagnostics once in the system,
  • Due to expensive raw materials, their cost is considerably higher,

Optimal lifting capacity of a neodymium magnetwhat it depends on?

The given strength of the magnet corresponds to the optimal strength, measured under optimal conditions, specifically:

  • with mild steel, serving as a magnetic flux conductor
  • of a thickness of at least 10 mm
  • with a polished side
  • with no separation
  • under perpendicular detachment force
  • in normal thermal conditions

What influences lifting capacity in practice

The lifting capacity of a magnet depends on in practice key elements, ordered from most important to least significant:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity testing was conducted on plates with a smooth surface of optimal thickness, under a perpendicular pulling force, however under shearing force the lifting capacity is smaller. Moreover, even a small distance {between} the magnet’s surface and the plate reduces the lifting capacity.

Be Cautious with Neodymium Magnets

Neodymium magnetic are fragile and can easily crack as well as get damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

  Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.

Neodymium magnets are not toys. Do not allow children to play with them. They can be a significant choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing significant injuries, and even death.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can shock you.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Neodymium magnets produce intense magnetic fields that can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets can demagnetize at high temperatures.

Although magnets have shown to retain their effectiveness up to 80°C or 175°F, this temperature may vary depending on the type of material, shape, and intended use of the magnet.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Neodymium magnets will jump and touch together within a distance of several to almost 10 cm from each other.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Caution!

To illustrate why neodymium magnets are so dangerous, see the article - How very dangerous are powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98