tel: +48 22 499 98 98

neodymium magnets

We offer red color magnetic Nd2Fe14B - our proposal. Practically all magnesy neodymowe in our store are available for immediate delivery (see the list). Check out the magnet price list for more details see the magnet price list

Magnet for searching F400 GOLD

Where to purchase powerful neodymium magnet? Magnetic holders in airtight and durable steel enclosure are perfect for use in variable and difficult climate conditions, including snow and rain check...

magnetic holders

Magnetic holders can be used to facilitate production, underwater exploration, or searching for space rocks from gold more...

Enjoy shipping of your order on the day of purchase before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

BM 950x180x70 [4x M8] - magnetic beam

magnetic beam

Catalog no 090225

GTIN: 5906301812609

5

length [±0,1 mm]

950 mm

Width [±0,1 mm]

180 mm

Height [±0,1 mm]

70 mm

Weight

61000 g

8564.49 with VAT / pcs + price for transport

6963.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
6963.00 ZŁ
8564.49 ZŁ
price from 5 pcs
6545.22 ZŁ
8050.62 ZŁ

Hunting for a discount?

Call us +48 888 99 98 98 otherwise drop us a message through form through our site.
Specifications and shape of neodymium magnets can be reviewed using our power calculator.

Order by 14:00 and we’ll ship today!

BM 950x180x70 [4x M8] - magnetic beam

Specification/characteristics BM 950x180x70 [4x M8] - magnetic beam
properties
values
Cat. no.
090225
GTIN
5906301812609
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
950 mm [±0,1 mm]
Width
180 mm [±0,1 mm]
Height
70 mm [±0,1 mm]
Weight
61000 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material

properties
values
units

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Magnetic beams are components mounted above conveyor systems, which are based on strong neodymium magnets to capture unwanted iron elements. Metallic elements float up and attach to the bottom surface of the beam. Magnetic beams are widely used in recycling, plastic processing and many other industries.
The selection of the magnetic beam depends on the width of the conveyor and the cross-section of the beam. A larger cross-section allows the beam to be suspended higher above the belt. For instance, for loose materials with a depth of 2-3 cm, a beam with a cross-section of 80x40 mm will suffice, while for a layer of material over 8 cm, a larger beam is required. We also manufacture magnetic beams made to order according to customer requirements.
The magnetic beam works due to the use of neodymium magnets, which generate a magnetic field attracting metal elements. This causes all metals in the transport to be captured and stopped. The beam can be mounted above the conveyor or set at an angle as a chute separator. The stainless steel housing protects the magnets, ensuring long-lasting and effective operation in various industries.
These devices are used for removing any iron contaminants, such as metal balls, M5-M10 nuts, metal items, such as nails or keys. The range of the beam's action depends on its magnetic parameters and cross-section. These devices are indispensable in many industrial sectors where removing iron contaminants is critical.
Their application allows for the effective removal of iron contaminants from transported materials, especially in industrial sectors requiring precise contaminant separation. Equipped with neodymium magnets, these beams ensure high reliability and work efficiency. Moreover, the ability to customize the beam parameters to meet the specific requirements of the customer makes them a versatile solution for many industrial sectors.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their magnetic efficiency, neodymium magnets provide the following advantages:

  • They retain their full power for almost ten years – the drop is just ~1% (according to analyses),
  • They are highly resistant to demagnetization caused by external magnetic sources,
  • By applying a reflective layer of gold, the element gains a clean look,
  • Magnetic induction on the surface of these magnets is very strong,
  • Neodymium magnets are known for very high magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the shape),
  • With the option for tailored forming and personalized design, these magnets can be produced in multiple shapes and sizes, greatly improving design adaptation,
  • Key role in new technology industries – they are used in hard drives, rotating machines, diagnostic apparatus or even technologically developed systems,
  • Compactness – despite their small size, they deliver powerful magnetism, making them ideal for precision applications

Disadvantages of magnetic elements:

  • They may fracture when subjected to a sudden impact. If the magnets are exposed to mechanical hits, we recommend in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture and additionally enhances its overall resistance,
  • They lose power at increased temperatures. Most neodymium magnets experience permanent degradation in strength when heated above 80°C (depending on the dimensions and height). However, we offer special variants with high temperature resistance that can operate up to 230°C or higher,
  • Magnets exposed to damp air can rust. Therefore, for outdoor applications, we advise waterproof types made of rubber,
  • Using a cover – such as a magnetic holder – is advised due to the difficulty in manufacturing threads directly in the magnet,
  • Health risk linked to microscopic shards may arise, in case of ingestion, which is notable in the family environments. Furthermore, miniature parts from these products might disrupt scanning after being swallowed,
  • Due to a complex production process, their cost is above average,

Breakaway strength of the magnet in ideal conditionswhat affects it?

The given strength of the magnet represents the optimal strength, calculated under optimal conditions, namely:

  • with the use of low-carbon steel plate serving as a magnetic yoke
  • having a thickness of no less than 10 millimeters
  • with a refined outer layer
  • in conditions of no clearance
  • under perpendicular detachment force
  • at room temperature

Determinants of practical lifting force of a magnet

Practical lifting force is dependent on factors, listed from the most critical to the less significant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Lifting capacity was determined by applying a steel plate with a smooth surface of optimal thickness (min. 20 mm), under vertically applied force, whereas under shearing force the load capacity is reduced by as much as 5 times. Additionally, even a slight gap {between} the magnet and the plate reduces the load capacity.

Exercise Caution with Neodymium Magnets

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

If the joining of neodymium magnets is not controlled, at that time they may crumble and also crack. Remember not to move them to each other or have them firmly in hands at a distance less than 10 cm.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets can become demagnetized at high temperatures.

In certain circumstances, Neodymium magnets can lose their magnetism when subjected to high temperatures.

Neodymium magnets are the strongest magnets ever invented. Their strength can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional disruption to the magnets.

Keep neodymium magnets away from TV, wallet, and computer HDD.

Neodymium magnets produce intense magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

Neodymium magnetic are delicate and can easily break and shatter.

Neodymium magnetic are delicate and will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

Avoid bringing neodymium magnets close to a phone or GPS.

Intense magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate very strong magnetic fields that can interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

  Magnets are not toys, children should not play with them.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. Small magnets can pose a serious choking hazard. If multiple magnets are swallowed, they can attract to each other through the intestinal walls, causing severe injuries, and even death.

Warning!

In order for you to know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous very powerful neodymium magnets.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98