tel: +48 888 99 98 98

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our offer. Practically all magnesy neodymowe on our website are in stock for immediate purchase (see the list). See the magnet price list for more details check the magnet price list

Magnets for treasure hunters F300 GOLD

Where to buy strong magnet? Magnetic holders in airtight, solid steel enclosure are ideally suited for use in difficult weather, including during rain and snow check...

magnets with holders

Magnetic holders can be applied to enhance production, underwater exploration, or locating meteors made of metal more information...

Shipping is always shipped on the same day before 2:00 PM on business days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

BM 950x180x70 [4x M8] - magnetic beam

magnetic beam

Catalog no 090225

GTIN: 5906301812609

5

length [±0,1 mm]

950 mm

Width [±0,1 mm]

180 mm

Height [±0,1 mm]

70 mm

Weight

61000 g

8564.49 with VAT / pcs + price for transport

6963.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
6963.00 ZŁ
8564.49 ZŁ
price from 5 pcs
6545.22 ZŁ
8050.62 ZŁ

Want to negotiate?

Contact us by phone +48 888 99 98 98 otherwise let us know via request form the contact section.
Weight along with shape of a magnet can be checked using our modular calculator.

Order by 14:00 and we’ll ship today!

BM 950x180x70 [4x M8] - magnetic beam

Specification/characteristics BM 950x180x70 [4x M8] - magnetic beam
properties
values
Cat. no.
090225
GTIN
5906301812609
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
950 mm [±0,1 mm]
Width
180 mm [±0,1 mm]
Height
70 mm [±0,1 mm]
Weight
61000 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material

properties
values
units

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Magnetic beams are components mounted above conveyor systems, which are based on strong neodymium magnets to separate iron contaminants from the transported material. Metallic elements float up and attach to the bottom surface of the beam. The use of such beams is particularly common in recycling, mineral raw materials and many other industries.
The dimensions of the magnetic beam are tailored to the width of the belt and the magnetic field range. A larger cross-section allows the beam to be suspended higher above the belt. For example, for loose materials with a depth of 2-3 cm, a beam with a cross-section of 80x40 mm will suffice, while for a layer of material over 8 cm, a larger beam is required. We also manufacture magnetic beams made to order according to customer requirements.
The basis of the magnetic beam’s operation are strong neodymium magnets, which generate a magnetic field attracting metal elements. Metal objects are lifted and attach to the underside of the beam. The beam can be mounted above the conveyor or set at an angle as a chute separator. The stainless steel housing protects the magnets, ensuring long-lasting and effective operation in various industries.
Magnetic beams effectively capture iron elements, such as balls with a diameter of 5-10 mm, bolts and nuts, metal items, such as nails or keys. The magnetic field strength of the beam allows for capturing metals from a distance of up to 120 mm. Thanks to this, magnetic beams are effective in metal separation in industries such as recycling, food processing, and plastic processing.
Their application allows for the effective removal of iron contaminants from transported materials, which is crucial in industries such as food processing, recycling, plastic processing, and mineral raw materials. Equipped with neodymium magnets, these beams ensure high reliability and work efficiency. Moreover, the ability to customize the beam parameters to meet the specific requirements of the customer makes them a versatile solution for many industrial sectors.

Advantages as well as disadvantages of neodymium magnets NdFeB.

In addition to their magnetic capacity, neodymium magnets provide the following advantages:

  • They do not lose their strength nearly 10 years – the decrease of lifting capacity is only ~1% (theoretically),
  • Their ability to resist magnetic interference from external fields is impressive,
  • In other words, due to the shiny gold coating, the magnet obtains an professional appearance,
  • Magnetic induction on the surface of these magnets is very strong,
  • Thanks to their enhanced temperature resistance, they can operate (depending on the geometry) even at temperatures up to 230°C or more,
  • Thanks to the freedom in shaping and the capability to adapt to specific requirements, neodymium magnets can be created in various configurations, which increases their application range,
  • Important function in advanced technical fields – they find application in hard drives, electric drives, clinical machines along with technologically developed systems,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in tiny dimensions, which allows for use in miniature devices

Disadvantages of magnetic elements:

  • They may fracture when subjected to a powerful impact. If the magnets are exposed to external force, it is advisable to use in a steel housing. The steel housing, in the form of a holder, protects the magnet from cracks while also enhances its overall resistance,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on size). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is common to use sealed magnets made of protective material for outdoor use,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing holes directly in the magnet,
  • Health risk from tiny pieces may arise, especially if swallowed, which is significant in the context of child safety. Furthermore, small elements from these assemblies can hinder health screening if inside the body,
  • In cases of large-volume purchasing, neodymium magnet cost may not be economically viable,

Maximum magnetic pulling forcewhat it depends on?

The given holding capacity of the magnet represents the highest holding force, measured in the best circumstances, specifically:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a refined outer layer
  • with zero air gap
  • with vertical force applied
  • at room temperature

Practical lifting capacity: influencing factors

The lifting capacity of a magnet depends on in practice key elements, according to their importance:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on the plate surface of 20 mm thickness, when the force acted perpendicularly, in contrast under shearing force the holding force is lower. Additionally, even a minimal clearance {between} the magnet’s surface and the plate decreases the lifting capacity.

Handle Neodymium Magnets Carefully

  Do not give neodymium magnets to children.

Neodymium magnets are not toys. Be cautious and make sure no child plays with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Do not bring neodymium magnets close to GPS and smartphones.

Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

Neodymium magnets are not recommended for people with pacemakers.

In the case of neodymium magnets, there is a strong magnetic field. As a result, it interferes with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.

Dust and powder from neodymium magnets are highly flammable.

Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.

Keep neodymium magnets away from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.

Comparing neodymium magnets to ferrite magnets (found in speakers), they are 10 times stronger, and their power can shock you.

On our website, you can find information on how to use neodymium magnets. This will help you avoid injuries and prevent damage to the magnets.

Magnets made of neodymium are incredibly delicate, they easily fall apart and can crumble.

Neodymium magnets are highly fragile, and by joining them in an uncontrolled manner, they will break. Neodymium magnetic are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of connection between the magnets, sharp metal fragments can be dispersed in different directions.

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.

Neodymium magnets bounce and touch each other mutually within a radius of several to around 10 cm from each other.

Caution!

To illustrate why neodymium magnets are so dangerous, read the article - How dangerous are very powerful neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98