tel: +48 22 499 98 98

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our proposal. All magnesy in our store are available for immediate delivery (check the list). See the magnet price list for more details see the magnet price list

Magnet for treasure hunters F400 GOLD

Where to purchase very strong neodymium magnet? Holders with magnets in airtight, solid steel casing are excellent for use in challenging weather conditions, including snow and rain read...

magnetic holders

Magnetic holders can be used to facilitate production, exploring underwater areas, or finding meteorites from gold check...

Enjoy delivery of your order on the day of purchase by 2:00 PM on working days.

Dhit sp. z o.o. logo
Product available shipping tomorrow

BM 950x180x70 [4x M8] - magnetic beam

magnetic beam

Catalog no 090225

GTIN: 5906301812609

5

length [±0,1 mm]

950 mm

Width [±0,1 mm]

180 mm

Height [±0,1 mm]

70 mm

Weight

61000 g

8 564.49 with VAT / pcs + price for transport

6 963.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
6 963.00 ZŁ
8 564.49 ZŁ
price from 5 pcs
6 545.22 ZŁ
8 050.62 ZŁ

Hunting for a discount?

Call us +48 888 99 98 98 alternatively let us know through our online form the contact page.
Lifting power along with appearance of neodymium magnets can be reviewed with our online calculation tool.

Orders placed before 14:00 will be shipped the same business day.

BM 950x180x70 [4x M8] - magnetic beam

Specification/characteristics BM 950x180x70 [4x M8] - magnetic beam
properties
values
Cat. no.
090225
GTIN
5906301812609
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
950 mm [±0,1 mm]
Width
180 mm [±0,1 mm]
Height
70 mm [±0,1 mm]
Weight
61000 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material

properties
values
units

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

A magnetic beam is a device mounted above conveyor belts, which use neodymium magnets to separate iron contaminants from the transported material. Metallic elements float up and attach to the bottom surface of the beam. The use of such beams is particularly common in recycling, mineral raw materials and other industrial sectors.
The selection of the magnetic beam depends on the width of the conveyor and the cross-section of the beam. The larger the cross-section of the beam, the greater the magnetic field range. For instance, for loose materials with a depth of 2-3 cm, a beam with a cross-section of 80x40 mm will suffice, whereas for a layer of material over 8 cm, a larger beam is required. We also manufacture magnetic beams made to order according to customer requirements.
The magnetic beam works due to the use of neodymium magnets, which create a field capable of attracting iron contaminants. Metal objects are lifted and attach to the underside of the beam. The beam can be mounted above the conveyor or set at an angle as a chute separator. The stainless steel housing protects the magnets, ensuring long-lasting and effective operation in various industries.
Magnetic beams effectively capture iron elements, such as metal balls, bolts and nuts, iron nails. The range of the beam's action depends on its magnetic parameters and cross-section. Thanks to this, magnetic beams are effective in metal separation in industries such as recycling, food processing, and plastic processing.
Their application allows for the effective removal of iron contaminants from transported materials, especially in industrial sectors requiring precise contaminant separation. Thanks to their design and strong neodymium magnets ensure high reliability and work efficiency. Additionally, the ability to customize the beam parameters to meet the specific requirements of the customer makes them a versatile solution for many industrial sectors.

Advantages as well as disadvantages of neodymium magnets NdFeB.

Besides their durability, neodymium magnets are valued for these benefits:

  • Their strength remains stable, and after approximately ten years, it drops only by ~1% (according to research),
  • They protect against demagnetization induced by surrounding electromagnetic environments remarkably well,
  • By applying a bright layer of nickel, the element gains a sleek look,
  • They have exceptional magnetic induction on the surface of the magnet,
  • With the right combination of magnetic alloys, they reach excellent thermal stability, enabling operation at or above 230°C (depending on the form),
  • With the option for customized forming and personalized design, these magnets can be produced in multiple shapes and sizes, greatly improving application potential,
  • Important function in new technology industries – they find application in HDDs, electric drives, clinical machines or even sophisticated instruments,
  • Thanks to their efficiency per volume, small magnets offer high magnetic performance, with minimal size,

Disadvantages of rare earth magnets:

  • They are prone to breaking when subjected to a powerful impact. If the magnets are exposed to shocks, it is advisable to use in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from damage , and at the same time increases its overall durability,
  • High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent deterioration in performance (depending on shape). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • They rust in a moist environment – during outdoor use, we recommend using moisture-resistant magnets, such as those made of polymer,
  • Using a cover – such as a magnetic holder – is advised due to the challenges in manufacturing complex structures directly in the magnet,
  • Possible threat related to magnet particles may arise, when consumed by mistake, which is significant in the protection of children. Moreover, miniature parts from these assemblies may hinder health screening if inside the body,
  • High unit cost – neodymium magnets are pricier than other types of magnets (e.g., ferrite), which increases the cost of large-scale applications

Maximum lifting capacity of the magnetwhat contributes to it?

The given holding capacity of the magnet means the highest holding force, calculated in the best circumstances, namely:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • of a thickness of at least 10 mm
  • with a polished side
  • with zero air gap
  • under perpendicular detachment force
  • at room temperature

Impact of factors on magnetic holding capacity in practice

The lifting capacity of a magnet is determined by in practice the following factors, ordered from most important to least significant:

  • Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on the plate surface of 20 mm thickness, when a perpendicular force was applied, in contrast under shearing force the lifting capacity is smaller. In addition, even a slight gap {between} the magnet’s surface and the plate lowers the load capacity.

Be Cautious with Neodymium Magnets

Neodymium magnets can become demagnetized at high temperatures.

Although magnets have demonstrated their effectiveness up to 80°C or 175°F, the temperature can vary depending on the type, shape, and intended use of the specific magnet.

Neodymium magnets are not recommended for people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

The magnet coating contains nickel, so be cautious if you have a nickel allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

Keep neodymium magnets away from GPS and smartphones.

Neodymium magnets are a source of intense magnetic fields that cause interference with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

 It is important to keep neodymium magnets away from youngest children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Strong magnetic fields emitted by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other devices. They can also damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Neodymium magnets are the most powerful, most remarkable magnets on the planet, and the surprising force between them can shock you at first.

Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.

Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.

Magnets attract each other within a distance of several to around 10 cm from each other. Remember not to insert fingers between magnets or alternatively in their path when they attract. Depending on how large the neodymium magnets are, they can lead to a cut or a fracture.

Neodymium magnets are extremely delicate, they easily crack as well as can crumble.

Neodymium magnetic are fragile and will crack if allowed to collide with each other, even from a distance of a few centimeters. Despite being made of metal and coated with a shiny nickel plating, they are not as hard as steel. At the moment of collision between the magnets, tiny sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.

Safety rules!

Please see the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98