tel: +48 22 499 98 98

neodymium magnets

We offer yellow color magnets Nd2Fe14B - our proposal. All "magnets" in our store are in stock for immediate delivery (see the list). See the magnet pricing for more details see the magnet price list

Magnets for water searching F300 GOLD

Where to purchase powerful neodymium magnet? Magnetic holders in solid and airtight enclosure are ideally suited for use in difficult climate conditions, including in the rain and snow read...

magnetic holders

Magnetic holders can be applied to enhance production processes, underwater exploration, or finding meteors from gold see...

Order is shipped if the order is placed by 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

BM 950x180x70 [4x M8] - magnetic beam

magnetic beam

Catalog no 090225

GTIN: 5906301812609

5

length [±0,1 mm]

950 mm

Width [±0,1 mm]

180 mm

Height [±0,1 mm]

70 mm

Weight

61000 g

8564.49 with VAT / pcs + price for transport

6963.00 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
6963.00 ZŁ
8564.49 ZŁ
price from 5 pcs
6545.22 ZŁ
8050.62 ZŁ

Want to talk magnets?

Give us a call +48 888 99 98 98 otherwise contact us by means of our online form our website.
Force as well as form of a neodymium magnet can be checked using our power calculator.

Order by 14:00 and we’ll ship today!

BM 950x180x70 [4x M8] - magnetic beam

Specification/characteristics BM 950x180x70 [4x M8] - magnetic beam
properties
values
Cat. no.
090225
GTIN
5906301812609
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
length
950 mm [±0,1 mm]
Width
180 mm [±0,1 mm]
Height
70 mm [±0,1 mm]
Weight
61000 g [±0,1 mm]
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material

properties
values
units

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Magnetic beams are components mounted above conveyor systems, which use neodymium magnets to capture unwanted iron elements. Metallic elements float up and attach to the bottom surface of the beam. The use of such beams is particularly common in recycling, mineral raw materials and other industrial sectors.
The selection of the magnetic beam depends on the width of the conveyor and the cross-section of the beam. A larger cross-section allows the beam to be suspended higher above the belt. For instance, for loose materials with a depth of 2-3 cm, a beam with a cross-section of 80x40 mm will suffice, whereas for a layer of material over 8 cm, a larger beam is required. Custom-sized beams are available upon request.
The magnetic beam works due to the use of neodymium magnets, which create a field capable of attracting iron contaminants. Metal objects are lifted and attach to the underside of the beam. Mounted at the right angle, it can function as a chute separator. The stainless steel housing protects the magnets, the device is durable and reliable in harsh industrial conditions.
Magnetic beams effectively capture iron elements, such as balls with a diameter of 5-10 mm, M5-M10 nuts, iron nails. The range of the beam's action depends on its magnetic parameters and cross-section. These devices are indispensable in many industrial sectors where removing iron contaminants is critical.
Magnetic beams are indispensable in industry due to their effectiveness in metal separation, especially in industrial sectors requiring precise contaminant separation. Equipped with neodymium magnets, these beams ensure high reliability and work efficiency. Moreover, the ability to customize the beam parameters to meet the specific requirements of the customer makes them a versatile solution for many industrial sectors.

Advantages and disadvantages of neodymium magnets NdFeB.

Besides their durability, neodymium magnets are valued for these benefits:

  • They do not lose their magnetism, even after around 10 years – the decrease of lifting capacity is only ~1% (based on measurements),
  • They protect against demagnetization induced by surrounding magnetic fields effectively,
  • By applying a shiny layer of silver, the element gains a sleek look,
  • They have very high magnetic induction on the surface of the magnet,
  • Neodymium magnets are known for strong magnetic induction and the ability to work at temperatures up to 230°C or higher (depending on the geometry),
  • With the option for fine forming and precise design, these magnets can be produced in numerous shapes and sizes, greatly improving design adaptation,
  • Key role in advanced technical fields – they find application in hard drives, electric motors, clinical machines as well as high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer intense magnetic field in small dimensions, which makes them ideal in miniature devices

Disadvantages of magnetic elements:

  • They may fracture when subjected to a powerful impact. If the magnets are exposed to physical collisions, it is advisable to use in a protective case. The steel housing, in the form of a holder, protects the magnet from fracture , and at the same time increases its overall robustness,
  • High temperatures may significantly reduce the magnetic power of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of synthetic coating for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining multi-axis shapes in neodymium magnets is restricted,
  • Health risk linked to microscopic shards may arise, especially if swallowed, which is important in the family environments. Moreover, small elements from these magnets have the potential to interfere with diagnostics after being swallowed,
  • In cases of large-volume purchasing, neodymium magnet cost may be a barrier,

Maximum lifting capacity of the magnetwhat it depends on?

The given strength of the magnet corresponds to the optimal strength, measured in ideal conditions, namely:

  • using a steel plate with low carbon content, serving as a magnetic circuit closure
  • with a thickness of minimum 10 mm
  • with a smooth surface
  • in conditions of no clearance
  • in a perpendicular direction of force
  • under standard ambient temperature

Determinants of lifting force in real conditions

The lifting capacity of a magnet is determined by in practice the following factors, according to their importance:

  • Air gap between the magnet and the plate, because even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was measured on a smooth steel plate of 20 mm thickness, when a perpendicular force was applied, in contrast under parallel forces the lifting capacity is smaller. In addition, even a slight gap {between} the magnet’s surface and the plate decreases the lifting capacity.

Handle with Care: Neodymium Magnets

Never bring neodymium magnets close to a phone and GPS.

Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.

Neodymium magnets are the strongest, most remarkable magnets on the planet, and the surprising force between them can shock you at first.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

Neodymium magnets can attract to each other, pinch the skin, and cause significant injuries.

Neodymium magnets will jump and also contact together within a distance of several to almost 10 cm from each other.

Magnets made of neodymium are highly susceptible to damage, resulting in shattering.

Neodymium magnets are delicate as well as will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.

The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

People with pacemakers are advised to avoid neodymium magnets.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This happens because such devices have a function to deactivate them in a magnetic field.

Neodymium magnets can become demagnetized at high temperatures.

Whilst Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

 Keep neodymium magnets far from youngest children.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.

Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. Avoid placing neodymium magnets in close proximity to electronic devices.

Caution!

Please read the article - What danger lies in neodymium magnets? You will learn how to handle them properly.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98