BM 950x180x70 [4x M8] - magnetic beam
magnetic beam
Catalog no 090225
GTIN: 5906301812609
length [±0,1 mm]
950 mm
Width [±0,1 mm]
180 mm
Height [±0,1 mm]
70 mm
Weight
61000 g
8564.49 ZŁ with VAT / pcs + price for transport
6963.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Need advice?
Pick up the phone and ask
+48 22 499 98 98
otherwise let us know through
contact form
through our site.
Strength along with form of magnets can be analyzed using our
online calculation tool.
Order by 14:00 and we’ll ship today!
BM 950x180x70 [4x M8] - magnetic beam
Magnetic properties of material
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
Besides their magnetic performance, neodymium magnets are valued for these benefits:
- They retain their attractive force for around ten years – the loss is just ~1% (in theory),
- They are extremely resistant to demagnetization caused by external magnetic sources,
- By applying a bright layer of nickel, the element gains a sleek look,
- Magnetic induction on the surface of these magnets is impressively powerful,
- With the right combination of magnetic alloys, they reach increased thermal stability, enabling operation at or above 230°C (depending on the design),
- Thanks to the freedom in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in various configurations, which broadens their functional possibilities,
- Key role in modern technologies – they serve a purpose in hard drives, rotating machines, healthcare devices and other advanced devices,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, in miniature format,
Disadvantages of NdFeB magnets:
- They are fragile when subjected to a powerful impact. If the magnets are exposed to external force, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from fracture and additionally enhances its overall robustness,
- Magnets lose field strength when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible magnetic decay (influenced by the magnet’s profile). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Magnets exposed to moisture can oxidize. Therefore, for outdoor applications, we advise waterproof types made of coated materials,
- Limited ability to create complex details in the magnet – the use of a external casing is recommended,
- Possible threat related to magnet particles may arise, if ingested accidentally, which is crucial in the protection of children. Moreover, tiny components from these products can complicate medical imaging if inside the body,
- In cases of large-volume purchasing, neodymium magnet cost is a challenge,
Highest magnetic holding force – what contributes to it?
The given strength of the magnet represents the optimal strength, calculated under optimal conditions, specifically:
- with mild steel, used as a magnetic flux conductor
- having a thickness of no less than 10 millimeters
- with a polished side
- with zero air gap
- under perpendicular detachment force
- at room temperature
Practical lifting capacity: influencing factors
In practice, the holding capacity of a magnet is affected by these factors, arranged from the most important to the least relevant:
- Air gap between the magnet and the plate, since even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was assessed using a smooth steel plate of suitable thickness (min. 20 mm), under vertically applied force, however under parallel forces the lifting capacity is smaller. In addition, even a minimal clearance {between} the magnet’s surface and the plate lowers the lifting capacity.
Exercise Caution with Neodymium Magnets
People with pacemakers are advised to avoid neodymium magnets.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Under no circumstances should neodymium magnets be placed near a computer HDD, TV, and wallet.
The strong magnetic field generated by neodymium magnets can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also damage devices like video players, televisions, CRT computer monitors. Do not forget to keep neodymium magnets away from these electronic devices.
The magnet is coated with nickel. Therefore, exercise caution if you have an allergy.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Neodymium magnets are fragile and can easily crack as well as shatter.
In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of collision between the magnets, small sharp metal fragments can be propelled in various directions at high speed. Eye protection is recommended.
Magnets should not be treated as toys. Therefore, it is not recommended for children to have access to them.
Neodymium magnets are not toys. You cannot allow them to become toys for children. Small magnets pose a serious choking hazard or can attract to each other in the intestines. In such cases, the only solution is to undergo surgery to remove the magnets, and otherwise, it can even lead to death.
Neodymium magnets can attract to each other, pinch the skin, and cause significant swellings.
Neodymium magnets will jump and also contact together within a distance of several to around 10 cm from each other.
Dust and powder from neodymium magnets are flammable.
Avoid drilling or mechanical processing of neodymium magnets. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets can become demagnetized at high temperatures.
Despite the fact that magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.
Neodymium magnets are the most powerful magnets ever invented. Their power can shock you.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional damage to the magnets.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Be careful!
To raise awareness of why neodymium magnets are so dangerous, see the article titled How dangerous are strong neodymium magnets?.
