BM 950x180x70 [4x M8] - magnetic beam
magnetic beam
Catalog no 090225
GTIN: 5906301812609
length [±0,1 mm]
950 mm
Width [±0,1 mm]
180 mm
Height [±0,1 mm]
70 mm
Weight
61000 g
8564.49 ZŁ with VAT / pcs + price for transport
6963.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Can't decide what to choose?
Call us
+48 22 499 98 98
alternatively drop us a message using
inquiry form
through our site.
Weight along with structure of a neodymium magnet can be checked using our
power calculator.
Same-day processing for orders placed before 14:00.
BM 950x180x70 [4x M8] - magnetic beam
Magnetic properties of material
Physical properties of NdFeB
Shopping tips
Advantages and disadvantages of neodymium magnets NdFeB.
In addition to their tremendous magnetic power, neodymium magnets offer the following advantages:
- Their strength is durable, and after approximately 10 years, it drops only by ~1% (according to research),
- They show strong resistance to demagnetization from external magnetic fields,
- In other words, due to the glossy silver coating, the magnet obtains an aesthetic appearance,
- They have very high magnetic induction on the surface of the magnet,
- These magnets tolerate high temperatures, often exceeding 230°C, when properly designed (in relation to profile),
- Thanks to the possibility in shaping and the capability to adapt to individual requirements, neodymium magnets can be created in diverse shapes and sizes, which increases their functional possibilities,
- Wide application in new technology industries – they serve a purpose in data storage devices, rotating machines, medical equipment or even other advanced devices,
- Thanks to their concentrated strength, small magnets offer high magnetic performance, in miniature format,
Disadvantages of NdFeB magnets:
- They are fragile when subjected to a powerful impact. If the magnets are exposed to external force, we recommend in a metal holder. The steel housing, in the form of a holder, protects the magnet from cracks , and at the same time strengthens its overall strength,
- High temperatures may significantly reduce the holding force of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
- Magnets exposed to wet conditions can corrode. Therefore, for outdoor applications, we suggest waterproof types made of rubber,
- The use of a protective casing or external holder is recommended, since machining internal cuts in neodymium magnets is not feasible,
- Potential hazard from tiny pieces may arise, if ingested accidentally, which is notable in the health of young users. Furthermore, tiny components from these assemblies may interfere with diagnostics once in the system,
- Due to a complex production process, their cost is relatively high,
Breakaway strength of the magnet in ideal conditions – what it depends on?
The given pulling force of the magnet corresponds to the maximum force, measured under optimal conditions, that is:
- using a steel plate with low carbon content, serving as a magnetic circuit closure
- of a thickness of at least 10 mm
- with a smooth surface
- with zero air gap
- with vertical force applied
- at room temperature
Determinants of practical lifting force of a magnet
Practical lifting force is dependent on elements, by priority:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) causes a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was determined using a smooth steel plate of optimal thickness (min. 20 mm), under vertically applied force, in contrast under shearing force the holding force is lower. Moreover, even a minimal clearance {between} the magnet’s surface and the plate reduces the holding force.
Handle Neodymium Magnets with Caution
Make sure not to bring neodymium magnets close to the TV, wallet, and computer HDD.
Magnetic fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
Dust and powder from neodymium magnets are highly flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Never bring neodymium magnets close to a phone and GPS.
Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.
Keep neodymium magnets away from people with pacemakers.
Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.
Neodymium magnets can demagnetize at high temperatures.
Under specific conditions, Neodymium magnets can lose their magnetism when subjected to high temperatures.
Neodymium magnets are incredibly delicate, they easily crack as well as can become damaged.
Neodymium magnets are characterized by considerable fragility. Neodymium magnets are made of metal and coated with a shiny nickel surface, but they are not as hard as steel. In the event of a collision between two magnets, there may be a scattering of fragments in different directions. Protecting your eyes is crucial in such a situation.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.
Neodymium Magnets can attract to each other, pinch the skin, and cause significant swellings.
In the case of holding a finger in the path of a neodymium magnet, in that situation, a cut or even a fracture may occur.
Maintain neodymium magnets away from children.
Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their strength can shock you.
Familiarize yourself with our information to properly handle these magnets and avoid significant swellings to your body and prevent damage to the magnets.
Warning!
In order for you to know how powerful neodymium magnets are and why they are so dangerous, read the article - Dangerous powerful neodymium magnets.
