BM 950x180x70 [4x M8] - magnetic beam
magnetic beam
Catalog no 090225
GTIN: 5906301812609
length [±0,1 mm]
950 mm
Width [±0,1 mm]
180 mm
Height [±0,1 mm]
70 mm
Weight
61000 g
8564.49 ZŁ with VAT / pcs + price for transport
6963.00 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?Hunting for a discount?
Contact us by phone
+48 22 499 98 98
alternatively get in touch through
our online form
through our site.
Lifting power as well as appearance of a neodymium magnet can be tested on our
our magnetic calculator.
Orders placed before 14:00 will be shipped the same business day.
BM 950x180x70 [4x M8] - magnetic beam
Magnetic properties of material
Physical properties of NdFeB
Shopping tips
Advantages as well as disadvantages of neodymium magnets NdFeB.
Apart from their notable power, neodymium magnets have these key benefits:
- They retain their full power for nearly 10 years – the drop is just ~1% (according to analyses),
- They protect against demagnetization induced by surrounding electromagnetic environments very well,
- Because of the reflective layer of gold, the component looks high-end,
- They have extremely strong magnetic induction on the surface of the magnet,
- Thanks to their enhanced temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
- With the option for fine forming and personalized design, these magnets can be produced in numerous shapes and sizes, greatly improving design adaptation,
- Significant impact in cutting-edge sectors – they find application in computer drives, electric drives, healthcare devices as well as technologically developed systems,
- Relatively small size with high magnetic force – neodymium magnets offer strong power in tiny dimensions, which makes them useful in small systems
Disadvantages of rare earth magnets:
- They are fragile when subjected to a heavy impact. If the magnets are exposed to physical collisions, it is suggested to place them in a protective enclosure. The steel housing, in the form of a holder, protects the magnet from breakage and reinforces its overall robustness,
- Magnets lose power when exposed to temperatures exceeding 80°C. In most cases, this leads to irreversible field weakening (influenced by the magnet’s structure). To address this, we provide [AH] models with superior thermal resistance, able to operate even at 230°C or more,
- Due to corrosion risk in humid conditions, it is wise to use sealed magnets made of plastic for outdoor use,
- The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is not feasible,
- Safety concern linked to microscopic shards may arise, especially if swallowed, which is significant in the family environments. Additionally, miniature parts from these devices might hinder health screening if inside the body,
- Higher purchase price is one of the drawbacks compared to ceramic magnets, especially in budget-sensitive applications
Best holding force of the magnet in ideal parameters – what contributes to it?
The given strength of the magnet corresponds to the optimal strength, assessed in the best circumstances, specifically:
- with the use of low-carbon steel plate serving as a magnetic yoke
- of a thickness of at least 10 mm
- with a refined outer layer
- with no separation
- under perpendicular detachment force
- at room temperature
Impact of factors on magnetic holding capacity in practice
Practical lifting force is dependent on elements, by priority:
- Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
- Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
- Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
- Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
- Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
- Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.
* Lifting capacity was determined with the use of a smooth steel plate of optimal thickness (min. 20 mm), under vertically applied force, in contrast under parallel forces the holding force is lower. Additionally, even a slight gap {between} the magnet and the plate decreases the lifting capacity.
Safety Precautions
Keep neodymium magnets away from the wallet, computer, and TV.
Strong fields generated by neodymium magnets can damage magnetic storage media such as floppy disks, credit cards, magnetic ID cards, cassette tapes, video tapes, or other similar devices. In addition, they can damage televisions, VCRs, computer monitors, and CRT displays. You should especially avoid placing neodymium magnets near electronic devices.
It is crucial not to allow the magnets to pinch together uncontrollably or place your fingers in their path as they attract to each other.
Magnets will crack or crumble with uncontrolled joining to each other. Remember not to move them to each other or have them firmly in hands at a distance less than 10 cm.
Neodymium magnets can become demagnetized at high temperatures.
In certain circumstances, Neodymium magnets may experience demagnetization when subjected to high temperatures.
Dust and powder from neodymium magnets are flammable.
Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.
Neodymium magnets are among the most powerful magnets on Earth. The astonishing force they generate between each other can shock you.
Please review the information on how to handle neodymium magnets and avoid significant harm to your body, as well as prevent unintentional disruption to the magnets.
If you have a nickel allergy, avoid contact with neodymium magnets.
Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.
Under no circumstances should neodymium magnets be brought close to GPS and smartphones.
Magnetic fields can interfere with compasses and magnetometers used in aviation and maritime navigation, as well as internal compasses of smartphones and GPS devices. There are neodymium magnets in every smartphone, for example, in the microphone and speakers.
Neodymium magnets should not be around youngest children.
Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.
Magnets made of neodymium are delicate as well as can easily crack and shatter.
Magnets made of neodymium are fragile and will crack if allowed to collide with each other, even from a distance of a few centimeters. They are coated with a shiny nickel plating similar to steel, but they are not as hard. In the case of a collision between two magnets, there can be a scattering of small sharp metal fragments in different directions. Protecting your eyes is essential.
Neodymium magnets are not recommended for people with pacemakers.
Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. Even if the magnetic field does not affect the device, it can damage its components or deactivate the entire device.
Warning!
So you are aware of why neodymium magnets are so dangerous, read the article titled How very dangerous are powerful neodymium magnets?.
