MP 36.2x11/6x7.5 / N38 - ring magnet
ring magnet
Catalog no 030248
GTIN/EAN: 5906301812241
Diameter
36.2 mm [±0,1 mm]
internal diameter Ø
11/6 mm [±0,1 mm]
Height
7.5 mm [±0,1 mm]
Weight
56.3 g
Magnetization Direction
↑ axial
Load capacity
17.12 kg / 167.95 N
Magnetic Induction
237.29 mT / 2373 Gs
Coating
[NiCuNi] Nickel
35.01 ZŁ with VAT / pcs + price for transport
28.46 ZŁ net + 23% VAT / pcs
bulk discounts:
Need more?
Call us now
+48 888 99 98 98
otherwise send us a note via
contact form
through our site.
Weight along with structure of a magnet can be reviewed using our
online calculation tool.
Orders submitted before 14:00 will be dispatched today!
Technical specification - MP 36.2x11/6x7.5 / N38 - ring magnet
Specification / characteristics - MP 36.2x11/6x7.5 / N38 - ring magnet
| properties | values |
|---|---|
| Cat. no. | 030248 |
| GTIN/EAN | 5906301812241 |
| Production/Distribution | Dhit sp. z o.o. |
| Country of origin | Poland / China / Germany |
| Customs code | 85059029 |
| Diameter | 36.2 mm [±0,1 mm] |
| internal diameter Ø | 11/6 mm [±0,1 mm] |
| Height | 7.5 mm [±0,1 mm] |
| Weight | 56.3 g |
| Magnetization Direction | ↑ axial |
| Load capacity ~ ? | 17.12 kg / 167.95 N |
| Magnetic Induction ~ ? | 237.29 mT / 2373 Gs |
| Coating | [NiCuNi] Nickel |
| Manufacturing Tolerance | ±0.1 mm |
Magnetic properties of material N38
| properties | values | units |
|---|---|---|
| remenance Br [min. - max.] ? | 12.2-12.6 | kGs |
| remenance Br [min. - max.] ? | 1220-1260 | mT |
| coercivity bHc ? | 10.8-11.5 | kOe |
| coercivity bHc ? | 860-915 | kA/m |
| actual internal force iHc | ≥ 12 | kOe |
| actual internal force iHc | ≥ 955 | kA/m |
| energy density [min. - max.] ? | 36-38 | BH max MGOe |
| energy density [min. - max.] ? | 287-303 | BH max KJ/m |
| max. temperature ? | ≤ 80 | °C |
Physical properties of sintered neodymium magnets Nd2Fe14B at 20°C
| properties | values | units |
|---|---|---|
| Vickers hardness | ≥550 | Hv |
| Density | ≥7.4 | g/cm3 |
| Curie Temperature TC | 312 - 380 | °C |
| Curie Temperature TF | 593 - 716 | °F |
| Specific resistance | 150 | μΩ⋅cm |
| Bending strength | 250 | MPa |
| Compressive strength | 1000~1100 | MPa |
| Thermal expansion parallel (∥) to orientation (M) | (3-4) x 10-6 | °C-1 |
| Thermal expansion perpendicular (⊥) to orientation (M) | -(1-3) x 10-6 | °C-1 |
| Young's modulus | 1.7 x 104 | kg/mm² |
Physical modeling of the assembly - data
The following data constitute the result of a mathematical analysis. Results were calculated on algorithms for the material Nd2Fe14B. Actual performance may differ. Please consider these data as a supplementary guide during assembly planning.
Table 1: Static pull force (force vs gap) - characteristics
MP 36.2x11/6x7.5 / N38
| Distance (mm) | Induction (Gauss) / mT | Pull Force (kg/lbs/g/N) | Risk Status |
|---|---|---|---|
| 0 mm |
2059 Gs
205.9 mT
|
17.12 kg / 37.74 lbs
17120.0 g / 167.9 N
|
crushing |
| 1 mm |
1997 Gs
199.7 mT
|
16.11 kg / 35.52 lbs
16110.1 g / 158.0 N
|
crushing |
| 2 mm |
1923 Gs
192.3 mT
|
14.93 kg / 32.91 lbs
14925.7 g / 146.4 N
|
crushing |
| 3 mm |
1838 Gs
183.8 mT
|
13.64 kg / 30.06 lbs
13636.4 g / 133.8 N
|
crushing |
| 5 mm |
1648 Gs
164.8 mT
|
10.97 kg / 24.18 lbs
10968.0 g / 107.6 N
|
crushing |
| 10 mm |
1161 Gs
116.1 mT
|
5.44 kg / 12.00 lbs
5444.8 g / 53.4 N
|
warning |
| 15 mm |
775 Gs
77.5 mT
|
2.43 kg / 5.35 lbs
2427.5 g / 23.8 N
|
warning |
| 20 mm |
515 Gs
51.5 mT
|
1.07 kg / 2.36 lbs
1071.1 g / 10.5 N
|
safe |
| 30 mm |
242 Gs
24.2 mT
|
0.24 kg / 0.52 lbs
236.8 g / 2.3 N
|
safe |
| 50 mm |
73 Gs
7.3 mT
|
0.02 kg / 0.05 lbs
21.8 g / 0.2 N
|
safe |
Table 2: Vertical load (vertical surface)
MP 36.2x11/6x7.5 / N38
| Distance (mm) | Friction coefficient | Pull Force (kg/lbs/g/N) |
|---|---|---|
| 0 mm | Stal (~0.2) |
3.42 kg / 7.55 lbs
3424.0 g / 33.6 N
|
| 1 mm | Stal (~0.2) |
3.22 kg / 7.10 lbs
3222.0 g / 31.6 N
|
| 2 mm | Stal (~0.2) |
2.99 kg / 6.58 lbs
2986.0 g / 29.3 N
|
| 3 mm | Stal (~0.2) |
2.73 kg / 6.01 lbs
2728.0 g / 26.8 N
|
| 5 mm | Stal (~0.2) |
2.19 kg / 4.84 lbs
2194.0 g / 21.5 N
|
| 10 mm | Stal (~0.2) |
1.09 kg / 2.40 lbs
1088.0 g / 10.7 N
|
| 15 mm | Stal (~0.2) |
0.49 kg / 1.07 lbs
486.0 g / 4.8 N
|
| 20 mm | Stal (~0.2) |
0.21 kg / 0.47 lbs
214.0 g / 2.1 N
|
| 30 mm | Stal (~0.2) |
0.05 kg / 0.11 lbs
48.0 g / 0.5 N
|
| 50 mm | Stal (~0.2) |
0.00 kg / 0.01 lbs
4.0 g / 0.0 N
|
Table 3: Vertical assembly (shearing) - vertical pull
MP 36.2x11/6x7.5 / N38
| Surface type | Friction coefficient / % Mocy | Max load (kg/lbs/g/N) |
|---|---|---|
| Raw steel |
µ = 0.3
30% Nominalnej Siły
|
5.14 kg / 11.32 lbs
5136.0 g / 50.4 N
|
| Painted steel (standard) |
µ = 0.2
20% Nominalnej Siły
|
3.42 kg / 7.55 lbs
3424.0 g / 33.6 N
|
| Oily/slippery steel |
µ = 0.1
10% Nominalnej Siły
|
1.71 kg / 3.77 lbs
1712.0 g / 16.8 N
|
| Magnet with anti-slip rubber |
µ = 0.5
50% Nominalnej Siły
|
8.56 kg / 18.87 lbs
8560.0 g / 84.0 N
|
Table 4: Material efficiency (substrate influence) - sheet metal selection
MP 36.2x11/6x7.5 / N38
| Steel thickness (mm) | % power | Real pull force (kg/lbs/g/N) |
|---|---|---|
| 0.5 mm |
|
0.86 kg / 1.89 lbs
856.0 g / 8.4 N
|
| 1 mm |
|
2.14 kg / 4.72 lbs
2140.0 g / 21.0 N
|
| 2 mm |
|
4.28 kg / 9.44 lbs
4280.0 g / 42.0 N
|
| 3 mm |
|
6.42 kg / 14.15 lbs
6420.0 g / 63.0 N
|
| 5 mm |
|
10.70 kg / 23.59 lbs
10700.0 g / 105.0 N
|
| 10 mm |
|
17.12 kg / 37.74 lbs
17120.0 g / 167.9 N
|
| 11 mm |
|
17.12 kg / 37.74 lbs
17120.0 g / 167.9 N
|
| 12 mm |
|
17.12 kg / 37.74 lbs
17120.0 g / 167.9 N
|
Table 5: Thermal stability (stability) - thermal limit
MP 36.2x11/6x7.5 / N38
| Ambient temp. (°C) | Power loss | Remaining pull (kg/lbs/g/N) | Status |
|---|---|---|---|
| 20 °C | 0.0% |
17.12 kg / 37.74 lbs
17120.0 g / 167.9 N
|
OK |
| 40 °C | -2.2% |
16.74 kg / 36.91 lbs
16743.4 g / 164.3 N
|
OK |
| 60 °C | -4.4% |
16.37 kg / 36.08 lbs
16366.7 g / 160.6 N
|
|
| 80 °C | -6.6% |
15.99 kg / 35.25 lbs
15990.1 g / 156.9 N
|
|
| 100 °C | -28.8% |
12.19 kg / 26.87 lbs
12189.4 g / 119.6 N
|
Table 6: Two magnets (attraction) - forces in the system
MP 36.2x11/6x7.5 / N38
| Gap (mm) | Attraction (kg/lbs) (N-S) | Sliding Force (kg/lbs/g/N) | Repulsion (kg/lbs) (N-N) |
|---|---|---|---|
| 0 mm |
22.24 kg / 49.03 lbs
3 569 Gs
|
3.34 kg / 7.35 lbs
3336 g / 32.7 N
|
N/A |
| 1 mm |
21.62 kg / 47.67 lbs
4 061 Gs
|
3.24 kg / 7.15 lbs
3243 g / 31.8 N
|
19.46 kg / 42.90 lbs
~0 Gs
|
| 2 mm |
20.93 kg / 46.14 lbs
3 995 Gs
|
3.14 kg / 6.92 lbs
3139 g / 30.8 N
|
18.84 kg / 41.52 lbs
~0 Gs
|
| 3 mm |
20.18 kg / 44.49 lbs
3 923 Gs
|
3.03 kg / 6.67 lbs
3027 g / 29.7 N
|
18.16 kg / 40.04 lbs
~0 Gs
|
| 5 mm |
18.56 kg / 40.93 lbs
3 763 Gs
|
2.78 kg / 6.14 lbs
2785 g / 27.3 N
|
16.71 kg / 36.83 lbs
~0 Gs
|
| 10 mm |
14.25 kg / 31.41 lbs
3 296 Gs
|
2.14 kg / 4.71 lbs
2137 g / 21.0 N
|
12.82 kg / 28.27 lbs
~0 Gs
|
| 20 mm |
7.07 kg / 15.59 lbs
2 322 Gs
|
1.06 kg / 2.34 lbs
1061 g / 10.4 N
|
6.37 kg / 14.03 lbs
~0 Gs
|
| 50 mm |
0.64 kg / 1.40 lbs
697 Gs
|
0.10 kg / 0.21 lbs
96 g / 0.9 N
|
0.57 kg / 1.26 lbs
~0 Gs
|
| 60 mm |
0.31 kg / 0.68 lbs
484 Gs
|
0.05 kg / 0.10 lbs
46 g / 0.5 N
|
0.28 kg / 0.61 lbs
~0 Gs
|
| 70 mm |
0.16 kg / 0.35 lbs
346 Gs
|
0.02 kg / 0.05 lbs
24 g / 0.2 N
|
0.14 kg / 0.31 lbs
~0 Gs
|
| 80 mm |
0.08 kg / 0.19 lbs
254 Gs
|
0.01 kg / 0.03 lbs
13 g / 0.1 N
|
0.08 kg / 0.17 lbs
~0 Gs
|
| 90 mm |
0.05 kg / 0.11 lbs
191 Gs
|
0.01 kg / 0.02 lbs
7 g / 0.1 N
|
0.04 kg / 0.10 lbs
~0 Gs
|
| 100 mm |
0.03 kg / 0.06 lbs
147 Gs
|
0.00 kg / 0.01 lbs
4 g / 0.0 N
|
0.03 kg / 0.06 lbs
~0 Gs
|
Table 7: Hazards (electronics) - warnings
MP 36.2x11/6x7.5 / N38
| Object / Device | Limit (Gauss) / mT | Safe distance |
|---|---|---|
| Pacemaker | 5 Gs (0.5 mT) | 13.5 cm |
| Hearing aid | 10 Gs (1.0 mT) | 10.5 cm |
| Timepiece | 20 Gs (2.0 mT) | 8.5 cm |
| Mobile device | 40 Gs (4.0 mT) | 6.5 cm |
| Car key | 50 Gs (5.0 mT) | 6.0 cm |
| Payment card | 400 Gs (40.0 mT) | 2.5 cm |
| HDD hard drive | 600 Gs (60.0 mT) | 2.0 cm |
Table 8: Dynamics (cracking risk) - warning
MP 36.2x11/6x7.5 / N38
| Start from (mm) | Speed (km/h) | Energy (J) | Predicted outcome |
|---|---|---|---|
| 10 mm |
20.79 km/h
(5.78 m/s)
|
0.94 J | |
| 30 mm |
30.72 km/h
(8.53 m/s)
|
2.05 J | |
| 50 mm |
39.36 km/h
(10.93 m/s)
|
3.36 J | |
| 100 mm |
55.61 km/h
(15.45 m/s)
|
6.72 J |
Table 9: Anti-corrosion coating durability
MP 36.2x11/6x7.5 / N38
| Technical parameter | Value / Description |
|---|---|
| Coating type | [NiCuNi] Nickel |
| Layer structure | Nickel - Copper - Nickel |
| Layer thickness | 10-20 µm |
| Salt spray test (SST) ? | 24 h |
| Recommended environment | Indoors only (dry) |
Table 10: Construction data (Flux)
MP 36.2x11/6x7.5 / N38
| Parameter | Value | SI Unit / Description |
|---|---|---|
| Magnetic Flux | 21 038 Mx | 210.4 µWb |
| Pc Coefficient | 0.26 | Low (Flat) |
Table 11: Underwater work (magnet fishing)
MP 36.2x11/6x7.5 / N38
| Environment | Effective steel pull | Effect |
|---|---|---|
| Air (land) | 17.12 kg | Standard |
| Water (riverbed) |
19.60 kg
(+2.48 kg buoyancy gain)
|
+14.5% |
1. Wall mount (shear)
*Caution: On a vertical surface, the magnet holds merely approx. 20-30% of its max power.
2. Efficiency vs thickness
*Thin metal sheet (e.g. 0.5mm PC case) severely weakens the holding force.
3. Power loss vs temp
*For N38 grade, the critical limit is 80°C.
4. Demagnetization curve and operating point (B-H)
chart generated for the permeance coefficient Pc (Permeance Coefficient) = 0.26
The chart above illustrates the magnetic characteristics of the material within the second quadrant of the hysteresis loop. The solid red line represents the demagnetization curve (material potential), while the dashed blue line is the load line based on the magnet's geometry. The Pc (Permeance Coefficient), also known as the load line slope, is a dimensionless value that describes the relationship between the magnet's shape and its magnetic stability. The intersection of these two lines (the black dot) is the operating point — it determines the actual magnetic flux density generated by the magnet in this specific configuration. A higher Pc value means the magnet is more 'slender' (tall relative to its area), resulting in a higher operating point and better resistance to irreversible demagnetization caused by external fields or temperature. A value of 0.42 is relatively low (typical for flat magnets), meaning the operating point is closer to the 'knee' of the curve — caution is advised when operating at temperatures near the maximum limit to avoid strength loss.
Material specification
| iron (Fe) | 64% – 68% |
| neodymium (Nd) | 29% – 32% |
| boron (B) | 1.1% – 1.2% |
| dysprosium (Dy) | 0.5% – 2.0% |
| coating (Ni-Cu-Ni) | < 0.05% |
Environmental data
| recyclability (EoL) | 100% |
| recycled raw materials | ~10% (pre-cons) |
| carbon footprint | low / zredukowany |
| waste code (EWC) | 16 02 16 |
See more proposals
Strengths and weaknesses of Nd2Fe14B magnets.
Benefits
- They virtually do not lose power, because even after ten years the decline in efficiency is only ~1% (in laboratory conditions),
- They retain their magnetic properties even under external field action,
- A magnet with a shiny silver surface is more attractive,
- Magnets possess maximum magnetic induction on the outer layer,
- Through (appropriate) combination of ingredients, they can achieve high thermal strength, allowing for action at temperatures reaching 230°C and above...
- In view of the potential of precise molding and adaptation to unique projects, NdFeB magnets can be modeled in a broad palette of forms and dimensions, which expands the range of possible applications,
- Fundamental importance in advanced technology sectors – they serve a role in mass storage devices, electric motors, medical devices, also other advanced devices.
- Thanks to their power density, small magnets offer high operating force, occupying minimum space,
Cons
- They are prone to damage upon heavy impacts. To avoid cracks, it is worth securing magnets in special housings. Such protection not only protects the magnet but also increases its resistance to damage
- When exposed to high temperature, neodymium magnets experience a drop in power. Often, when the temperature exceeds 80°C, their power decreases (depending on the size and shape of the magnet). For those who need magnets for extreme conditions, we offer [AH] versions withstanding up to 230°C
- They rust in a humid environment - during use outdoors we suggest using waterproof magnets e.g. in rubber, plastic
- We recommend a housing - magnetic mount, due to difficulties in creating nuts inside the magnet and complex forms.
- Possible danger resulting from small fragments of magnets can be dangerous, if swallowed, which is particularly important in the context of child safety. Additionally, small components of these products are able to be problematic in diagnostics medical after entering the body.
- High unit price – neodymium magnets have a higher price than other types of magnets (e.g. ferrite), which can limit application in large quantities
Pull force analysis
Detachment force of the magnet in optimal conditions – what contributes to it?
- on a base made of structural steel, optimally conducting the magnetic field
- whose thickness reaches at least 10 mm
- with a plane free of scratches
- without the slightest clearance between the magnet and steel
- during detachment in a direction vertical to the plane
- in stable room temperature
Practical aspects of lifting capacity – factors
- Gap between surfaces – every millimeter of distance (caused e.g. by veneer or unevenness) drastically reduces the pulling force, often by half at just 0.5 mm.
- Load vector – highest force is reached only during perpendicular pulling. The shear force of the magnet along the plate is usually many times lower (approx. 1/5 of the lifting capacity).
- Element thickness – for full efficiency, the steel must be sufficiently thick. Thin sheet limits the attraction force (the magnet "punches through" it).
- Plate material – mild steel attracts best. Alloy steels decrease magnetic permeability and lifting capacity.
- Plate texture – smooth surfaces guarantee perfect abutment, which increases force. Rough surfaces weaken the grip.
- Thermal factor – high temperature weakens pulling force. Too high temperature can permanently damage the magnet.
Lifting capacity was assessed by applying a smooth steel plate of suitable thickness (min. 20 mm), under perpendicular pulling force, in contrast under shearing force the holding force is lower. Moreover, even a slight gap between the magnet’s surface and the plate decreases the lifting capacity.
Safety rules for work with neodymium magnets
Serious injuries
Pinching hazard: The pulling power is so great that it can cause blood blisters, crushing, and broken bones. Use thick gloves.
Allergy Warning
Medical facts indicate that nickel (the usual finish) is a potent allergen. If your skin reacts to metals, avoid touching magnets with bare hands and select versions in plastic housing.
Flammability
Powder generated during grinding of magnets is self-igniting. Avoid drilling into magnets without proper cooling and knowledge.
No play value
Only for adults. Tiny parts pose a choking risk, causing serious injuries. Keep out of reach of kids and pets.
Conscious usage
Before use, check safety instructions. Sudden snapping can break the magnet or hurt your hand. Think ahead.
Danger to pacemakers
People with a ICD should keep an safe separation from magnets. The magnetism can interfere with the functioning of the implant.
Do not overheat magnets
Monitor thermal conditions. Heating the magnet to high heat will destroy its properties and pulling force.
Safe distance
Intense magnetic fields can erase data on payment cards, hard drives, and storage devices. Maintain a gap of min. 10 cm.
GPS Danger
A strong magnetic field interferes with the functioning of magnetometers in phones and GPS navigation. Do not bring magnets close to a device to avoid breaking the sensors.
Shattering risk
Despite the nickel coating, neodymium is delicate and cannot withstand shocks. Avoid impacts, as the magnet may crumble into sharp, dangerous pieces.
