tel: +48 22 499 98 98

neodymium magnets

We provide yellow color magnetic Nd2Fe14B - our offer. All magnesy on our website are available for immediate purchase (see the list). See the magnet pricing for more details check the magnet price list

Magnets for water searching F200 GOLD

Where to buy strong magnet? Magnet holders in solid and airtight enclosure are excellent for use in difficult, demanding climate conditions, including snow and rain see...

magnetic holders

Holders with magnets can be used to enhance manufacturing, underwater discoveries, or searching for meteors made of metal see...

Shipping is shipped if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping tomorrow

MW 16x3 / N38 - cylindrical magnet

cylindrical magnet

Catalog no 010033

GTIN: 5906301810322

5

Diameter Ø [±0,1 mm]

16 mm

Height [±0,1 mm]

3 mm

Weight

4.52 g

Magnetization Direction

↑ axial

Load capacity

2.65 kg / 25.99 N

Magnetic Induction

217.61 mT

Coating

[NiCuNi] nickel

1.73 with VAT / pcs + price for transport

1.41 ZŁ net + 23% VAT / pcs

bulk discounts:

Need more?

price from 1 pcs
1.41 ZŁ
1.73 ZŁ
price from 450 pcs
1.33 ZŁ
1.64 ZŁ
price from 1800 pcs
1.23 ZŁ
1.51 ZŁ

Want to talk magnets?

Call us +48 888 99 98 98 or get in touch by means of contact form the contact page.
Strength along with appearance of a neodymium magnet can be tested using our online calculation tool.

Order by 14:00 and we’ll ship today!

MW 16x3 / N38 - cylindrical magnet

Specification/characteristics MW 16x3 / N38 - cylindrical magnet
properties
values
Cat. no.
010033
GTIN
5906301810322
Production/Distribution
Dhit sp. z o.o.
Country of origin
Poland / China / Germany
Customs code
85059029
Diameter Ø
16 mm [±0,1 mm]
Height
3 mm [±0,1 mm]
Weight
4.52 g [±0,1 mm]
Magnetization Direction
↑ axial
Load capacity ~ ?
2.65 kg / 25.99 N
Magnetic Induction ~ ?
217.61 mT
Coating
[NiCuNi] nickel
Manufacturing Tolerance
± 0.1 mm

Magnetic properties of material N38

properties
values
units
coercivity bHc ?
860-915
kA/m
coercivity bHc ?
10.8-11.5
kOe
energy density [Min. - Max.] ?
287-303
BH max KJ/m
energy density [Min. - Max.] ?
36-38
BH max MGOe
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
actual internal force iHc
≥ 955
kA/m
actual internal force iHc
≥ 12
kOe
max. temperature ?
≤ 80
°C

Physical properties of NdFeB

properties
values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²

Shopping tips

Neodymium Cylindrical Magnets min. MW 16x3 / N38 are magnets created of neodymium in a cylindrical shape. They are known for their very strong magnetic properties, which exceed traditional ferrite magnets. Thanks to their strength, they are frequently used in products that need strong adhesion. The typical temperature resistance of such magnets is 80 degrees C, but for cylindrical magnets, this temperature increases with their height. Additionally, various special coatings, such as nickel, gold, or chrome, are frequently applied to the surface of neodymium magnets to increase their durability to corrosion. The shape of a cylinder is also very popular among neodymium magnets. The magnet with the designation MW 16x3 / N38 with a magnetic lifting capacity of 2.65 kg has a weight of only 4.52 grams.
Cylindrical neodymium magnets, also known as Nd2Fe14B, are the strongest known material for magnet production. Their production process requires a specialized approach and includes melting special neodymium alloys with other metals such as iron and boron. After appropriate processing, such as heat and mechanical treatment, the magnets are made available for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, although neodymium is part of the strongest magnets, they are susceptible to corrosion in humid environments. For this reason, they are coated with a coating of nickel to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, are brittle, which requires special caution during their handling. Therefore, any mechanical processing should be done before they are magnetized.

In terms of safety, there are many recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or in solvents, and also in water or oil. Furthermore, they can damage data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not always certain.
In terms of purchasing of cylindrical neodymium magnets, several enterprises offer such products. One of the recommended suppliers is our company Dhit, situated in Ożarów Mazowiecki, the address is available directly in the contact tab. It's always worth check the site for the latest information and promotions, and before visiting, we recommend calling.
Although, cylindrical neodymium magnets are very practical in various applications, they can also pose certain risk. Because of their strong magnetic power, they can pull metallic objects with uncontrolled force, which can lead to damaging skin as well as other surfaces, especially fingers. One should not use neodymium magnets near equipment or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Furthermore, neodymium magnets are susceptible to corrosion in humid environments, thus they are coated with a thin e.g., nickel layer. Generally, although they are handy, they should be handled with due caution.
Neodymium magnets, with the formula Nd2Fe14B, are currently the strong magnets on the market. They are produced through a complicated sintering process, which involves fusing special alloys of neodymium with additional metals and then shaping and heat treating. Their amazing magnetic strength comes from the specific production technology and chemical structure.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often coated with thin coatings, such as nickel, to protect them from external factors and prolong their durability. High temperatures exceeding 130°C can result in a reduction of their magnetic strength, although there are particular types of neodymium magnets that can tolerate temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are insulated. Additionally, their use is not recommended in water, oil, or in an atmosphere containing hydrogen, as they may forfeit their magnetic strength.
A cylindrical neodymium magnet of class N50 and N52 is a powerful and highly strong magnetic piece designed as a cylinder, providing strong holding power and universal applicability. Very good price, fast shipping, resistance and universal usability.

Advantages and disadvantages of neodymium magnets NdFeB.

In addition to their remarkable magnetic power, neodymium magnets offer the following advantages:

  • They virtually do not lose power, because even after 10 years, the performance loss is only ~1% (according to literature),
  • They are extremely resistant to demagnetization caused by external magnetic fields,
  • The use of a decorative nickel surface provides a refined finish,
  • They exhibit superior levels of magnetic induction near the outer area of the magnet,
  • Thanks to their exceptional temperature resistance, they can operate (depending on the shape) even at temperatures up to 230°C or more,
  • The ability for precise shaping or customization to custom needs – neodymium magnets can be manufactured in a wide range of shapes and sizes, which extends the scope of their use cases,
  • Key role in cutting-edge sectors – they are used in HDDs, electromechanical systems, medical equipment or even high-tech tools,
  • Relatively small size with high magnetic force – neodymium magnets offer impressive pulling strength in compact dimensions, which allows for use in compact constructions

Disadvantages of NdFeB magnets:

  • They are fragile when subjected to a sudden impact. If the magnets are exposed to external force, it is suggested to place them in a steel housing. The steel housing, in the form of a holder, protects the magnet from damage and strengthens its overall strength,
  • High temperatures may significantly reduce the strength of neodymium magnets. Typically, above 80°C, they experience permanent weakening in performance (depending on height). To prevent this, we offer heat-resistant magnets marked [AH], capable of working up to 230°C, which makes them perfect for high-temperature use,
  • Due to corrosion risk in humid conditions, it is recommended to use sealed magnets made of synthetic coating for outdoor use,
  • The use of a protective casing or external holder is recommended, since machining threads in neodymium magnets is difficult,
  • Potential hazard related to magnet particles may arise, in case of ingestion, which is important in the protection of children. Additionally, miniature parts from these devices might interfere with diagnostics once in the system,
  • Higher purchase price is an important factor to consider compared to ceramic magnets, especially in budget-sensitive applications

Breakaway strength of the magnet in ideal conditionswhat contributes to it?

The given strength of the magnet means the optimal strength, determined in the best circumstances, specifically:

  • with mild steel, serving as a magnetic flux conductor
  • having a thickness of no less than 10 millimeters
  • with a smooth surface
  • with zero air gap
  • with vertical force applied
  • in normal thermal conditions

Lifting capacity in real conditions – factors

The lifting capacity of a magnet depends on in practice the following factors, ordered from most important to least significant:

  • Air gap between the magnet and the plate, as even a very small distance (e.g. 0.5 mm) can cause a drop in lifting force of up to 50%.
  • Direction of applied force, because the maximum lifting capacity is achieved under perpendicular application. The force required to slide the magnet along the plate is usually several times lower.
  • Thickness of the plate, as a plate that is too thin causes part of the magnetic flux not to be used and to remain wasted in the air.
  • Material of the plate, because higher carbon content lowers holding force, while higher iron content increases it. The best choice is steel with high magnetic permeability and high saturation induction.
  • Surface of the plate, because the more smooth and polished it is, the better the contact and consequently the greater the magnetic saturation.
  • Operating temperature, since all permanent magnets have a negative temperature coefficient. This means that at high temperatures they are weaker, while at sub-zero temperatures they become slightly stronger.

* Holding force was checked on the plate surface of 20 mm thickness, when a perpendicular force was applied, however under attempts to slide the magnet the lifting capacity is smaller. Additionally, even a minimal clearance {between} the magnet and the plate decreases the load capacity.

Notes with Neodymium Magnets

Avoid bringing neodymium magnets close to a phone or GPS.

Magnetic fields generated by neodymium magnets interfere with compasses and magnetometers used in navigation, as well as internal compasses of smartphones and GPS devices.

The magnet coating is made of nickel, so be cautious if you have an allergy.

Studies show a small percentage of people have allergies to certain metals, including nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, try wearing gloves or avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets are extremely fragile, they easily break and can become damaged.

In the event of a collision between two neodymium magnets, it can result in them getting chipped. They are coated with a shiny nickel plating similar to steel, but they are not as hard. At the moment of connection between the magnets, tiny sharp metal pieces can be propelled in various directions at high speed. Eye protection is recommended.

Neodymium magnets can become demagnetized at high temperatures.

While Neodymium magnets can lose their magnetic properties at high temperatures, it's important to note that the extent of this effect can vary based on factors such as the magnet's material, shape, and intended application.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets generate strong magnetic fields. As a result, they interfere with the operation of a pacemaker. This is because many of these devices are equipped with a function that deactivates the device in a magnetic field.

Dust and powder from neodymium magnets are flammable.

Do not attempt to drill into neodymium magnets. Mechanical processing is also not recommended. Once crushed into fine powder or dust, this material becomes highly flammable.

Do not place neodymium magnets near a computer HDD, TV, and wallet.

Neodymium magnets generate strong magnetic fields that can damage magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, etc. devices. They can also destroy videos, televisions, CRT computer monitors. Do not forget to keep neodymium magnets at a safe distance from these electronic devices.

Neodymium magnets are over 10 times more powerful than ferrite magnets (the ones in speakers), and their power can surprise you.

Read the information on our website on how to properly utilize neodymium magnets and avoid significant harm to your body and unintentional damage to the magnets.

  Magnets are not toys, children should not play with them.

Not all neodymium magnets are toys, so do not let children play with them. In such a situation, surgery is necessary to remove them. In the worst case scenario, it can result in death.

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

If you have a finger between or on the path of attracting magnets, there may be a large cut or even a fracture.

Be careful!

To raise awareness of why neodymium magnets are so dangerous, read the article titled How very dangerous are very strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98