e-mail: bok@dhit.pl

neodymium magnets

We offer yellow color magnetic Nd2Fe14B - our store's offer. Practically all "neodymium magnets" in our store are in stock for immediate purchase (check the list). Check out the magnet price list for more details see the magnet price list

Magnets for treasure hunters F400 GOLD

Where to buy strong magnet? Holders with magnets in airtight and durable steel enclosure are excellent for use in difficult, demanding weather conditions, including in the rain and snow check...

magnetic holders

Magnetic holders can be used to improve production, underwater discoveries, or finding space rocks made of ore more...

Order always shipped if the order is placed before 2:00 PM on weekdays.

Dhit sp. z o.o. logo
Product available shipping in 2 days!

MW 16x3 / N38 - neodymium magnet

cylindrical magnet

catalog number 010033

GTIN: 5906301810322

5.0

diameter Ø

16 mm [±0,1 mm]

height

3 mm [±0,1 mm]

magnetizing direction

↑ axial

capacity ~

2.65 kg / 25.99 N

magnetic induction ~

217.61 mT / 2,176 Gs

max. temperature

≤ 80 °C

1.73 gross price (including VAT) / pcs +

1.41 ZŁ net price + 23% VAT / pcs

bulk discounts:

need more quantity?

price from 1 pcs
1.41 ZŁ
1.73 ZŁ
price from 426 pcs
1.33 ZŁ
1.64 ZŁ
price from 1561 pcs
1.24 ZŁ
1.53 ZŁ

Want a better price?

Give us a call tel: +48 888 99 98 98 or write through contact form on our website. You can check the lifting capacity as well as the appearance of neodymium magnet in our magnetic mass calculator power calculator

Orders placed by 2:00 PM will be shipped on the same business day.

Specification: cylindrical magnet 16x3 / N38 ↑ axial

Characteristics: cylindrical magnet 16x3 / N38 ↑ axial
Properties
Values
catalog number
010033
production / distribution
Dhit sp. z o.o.
country of origin
Poland / China / Germany
customs code
85059029
diameter Ø
16 mm [±0,1 mm]
height
3 mm [±0,1 mm]
magnetizing direction ?
↑ axial
capacity ~ ?
2.65 kg / 25.99 N
magnetic induction ~ ?
217.61 mT / 2,176 Gs
max. temperature ?
≤ 80 °C
coating type ?
[NiCuNi] nickel
weight
4.52 g
execution tolerance
± 0.1 mm

Magnetic properties of the material N38

material characteristics N38
Properties
Values
units
remenance Br [Min. - Max.] ?
12.2-12.6
kGs
remenance Br [Min. - Max.] ?
1220-1260
T
coercivity bHc ?
10.8-11.5
kOe
coercivity bHc ?
860-915
kA/m
actual internal force iHc
≥ 12
kOe
actual internal force iHc
≥ 955
kA/m
energy density [Min. - Max.]
36-38
BH max MGOe
energy density [Min. - Max.]
287-303
BH max KJ/m
max. temperature
≤ 80
°C

Physical properties of sintered neodymium magnets Nd2Fe14B

Physical properties of sintered neodymium magnets Nd2Fe14B
Properties
Values
units
Vickers hardness
≥550
Hv
Density
≥7.4
g/cm3
Curie Temperature TC
312 - 380
°C
Curie Temperature TF
593 - 716
°F
Specific resistance
150
μΩ⋅Cm
Bending strength
250
Mpa
Compressive strength
1000~1100
Mpa
Thermal expansion parallel (∥) to orientation (M)
(3-4) x 106
°C-1
Thermal expansion perpendicular (⊥) to orientation (M)
-(1-3) x 10-6
°C-1
Young's modulus
1.7 x 104
kg/mm²
Neodymium Cylindrical Magnets min. MW 16x3 / N38 are magnets made of neodymium in a cylindrical shape. They are known for their very strong magnetic properties, which exceed traditional ferrite magnets. Thanks to their strength, they are often used in devices that require powerful holding. The typical temperature resistance of such magnets is 80°C, but for magnets in a cylindrical form, this temperature increases with the growth of the magnet. Additionally, various special coatings, such as nickel, gold, or chrome, are often applied to the surface of neodymium magnets to increase their resistance to corrosion. The shape of a cylinder is also very popular among neodymium magnets. The magnet designated MW 16x3 / N38 and a magnetic force 2.65 kg weighs only 4.52 grams.
Cylindrical neodymium magnets, often referred to as Nd2Fe14B, are the strongest known material for magnet production. Their production process is complicated and includes sintering special neodymium alloys along with other metals such as iron and boron. After a series of processes, such as heat and mechanical treatment, the magnets are made available for use in many applications, such as electric motors, audio-video equipment, and in the automotive and aerospace industries.
Moreover, even though neodymium is a component of the strongest magnets, they are prone to corrosion in humid environments. For this reason, they are coated with a coating of nickel to protect them from corrosion. It's worth noting that NdFeB neodymium magnets are about 13% lighter than SmCo magnets and, despite their power, easily break, which requires care during their handling. For this reason, any mechanical processing should be done before they are magnetized.

In terms of safety, there are several recommendations regarding the use of these magnets. It is advisable to avoid their use in acidic, basic, organic environments or where solvents are present, and also in water or oil. Furthermore, they can distort data on magnetic cards and hard drives, although data deletion using a neodymium magnet is not guaranteed.
In terms of purchasing of cylindrical neodymium magnets, many companies offer such products. One of the recommended suppliers is our company Dhit, located in Ożarów Mazowiecki, the address is available directly in the contact tab. It is recommended to visit the site for the current information as well as offers, and before visiting, please call.
Due to their power, cylindrical neodymium magnets are very practical in various applications, they can also constitute certain risk. Due to their strong magnetic power, they can attract metallic objects with significant force, which can lead to crushing skin or other materials, especially fingers. Do not use neodymium magnets near electronic devices or data storage devices, such as credit cards, as they can destroy these devices in terms of magnetic recording. Moreover, neodymium magnets are susceptible to corrosion in humid environments, therefore they are coated with a thin protective layer. Generally, although they are handy, they should be handled with due caution.
Neodymium magnets, with the formula Nd2Fe14B, are at this time the strongest available magnets on the market. They are produced through a complicated sintering process, which involves melting specific alloys of neodymium with other metals and then forming and thermal processing. Their amazing magnetic strength comes from the unique production technology and chemical composition.
In terms of properties in different environments, neodymium magnets are susceptible to corrosion, especially in conditions of high humidity. Therefore, they are often covered with thin coatings, such as epoxy, to preserve them from environmental factors and extend their lifespan. Temperatures exceeding 130°C can cause a loss of their magnetic properties, although there are specific types of neodymium magnets that can withstand temperatures up to 230°C.
As for potential dangers, it is important to avoid using neodymium magnets in acidic environments, basic conditions, organic or solvent environments, unless they are adequately insulated. Additionally, their use is not recommended in water, oil, or in an environment containing hydrogen, as they may lose their magnetic strength.

Shopping tips

Advantages and disadvantages of neodymium magnets NdFeB.

Apart from immense strength, neodymium magnets have the following advantages:

  • They do not lose their power (of the magnet). After about 10 years, their power decreases by only ~1% (theoretically),
  • They are exceptionally resistant to demagnetization caused by an external magnetic field,
  • In other words, thanks to the shiny coating of nickel, gold, or silver, the element acquires an aesthetic appearance,
  • They possess very high magnetic induction on the surface of the magnet,
  • Thanks to their high temperature resistance, they can operate (depending on the form) even at temperatures up to 230°C and above...
  • Due to the option of accurate forming and adaptation to individual needs – neodymium magnets can be produced in many variants of shapes or sizes, which expands the range of their possible uses.
  • Wide application in advanced technologically fields – find application in HDD drives, electric drive mechanisms, medical devices or very advanced devices.

Disadvantages of neodymium magnets:

  • They can break as they are fragile when subjected to a powerful impact. If the magnets are exposed to impacts, we recommend using magnets in a steel housing. The steel housing in the form of a holder protects the magnet from impacts and also increases its overall strength,
  • High temperatures can reduce the strength of neodymium magnets. Typically, after heating above 80°C, most of them experience a permanent loss in strength (although it is dependent on the form and size). To prevent this, we offer special magnets marked with the symbol [AH], which are highly resistant to high temperatures. They can operate even at temperatures up to 230°C, making them an ideal solution for applications requiring high-temperature operation,
  • They rust in a humid environment - during outdoor use, we recommend using waterproof magnets, such as those made of rubber or plastic,
  • The use of a cover - a magnetic holder is recommended due to the limited production capabilities of creating threads or complex shapes in the magnet
  • Potential hazard to health from tiny fragments of magnets are risky, if swallowed, which is crucial in the aspect of protecting young children. It's also worth noting that small elements of these magnets can hinder the diagnostic process in case of swallowing.

Caution with Neodymium Magnets

Magnets will attract to each other, so remember not to allow them to pinch together without control or place your fingers in their path.

Magnets will attract each other within a distance of several to about 10 cm from each other. Don't put your fingers in the path of magnet attraction, because a significant injury may occur. Magnets, depending on their size, can even cut off a finger or alternatively there can be a significant pressure or even a fracture.

Under no circumstances should neodymium magnets be brought close to GPS and smartphones.

Neodymium magnets generate intense magnetic fields that interfere with magnetometers and compasses used in navigation, as well as internal compasses of smartphones and GPS devices.

If you have a nickel allergy, avoid contact with neodymium magnets.

Studies clearly indicate a small percentage of people who suffer from metal allergies such as nickel. An allergic reaction often manifests as skin redness and rash. If you have a nickel allergy, you can try wearing gloves or simply avoid direct contact with nickel-plated neodymium magnets.

Neodymium magnets should not be near people with pacemakers.

Neodymium magnets produce strong magnetic fields that can interfere with the operation of a heart pacemaker. However, if the magnetic field does not affect the device, it can damage its components or deactivate the device when it is in a magnetic field.

Neodymium magnets are over 10 times stronger than ferrite magnets (the ones in speakers), and their power can surprise you.

Familiarize yourself with our information to correctly handle these magnets and avoid significant injuries to your body and prevent disruption to the magnets.

Dust and powder from neodymium magnets are flammable.

Avoid drilling or mechanical processing of neodymium magnets. If the magnet is crushed into fine powder or dust, it becomes highly flammable.

 It is essential to keep neodymium magnets away from youngest children.

Remember that neodymium magnets are not toys. Do not allow children to play with them. In the case of swallowing multiple magnets simultaneously, they can attract to each other through the intestinal walls. In the worst case scenario, this can lead to death.

Neodymium magnets can demagnetize at high temperatures.

Even though magnets have been observed to maintain their efficacy up to temperatures of 80°C or 175°F, it's essential to consider that this threshold may fluctuate depending on the magnet's type, configuration, and intended usage.

Neodymium magnets are incredibly fragile, they easily fall apart and can crumble.

Magnets made of neodymium are extremely delicate, and by joining them in an uncontrolled manner, they will break. Neodymium magnets are made of metal and coated with a shiny nickel, but they are not as durable as steel. At the moment of collision between the magnets, sharp metal fragments can be dispersed in different directions.

Keep neodymium magnets away from the wallet, computer, and TV.

The strong magnetic field generated by neodymium magnets can destroy magnetic media such as floppy disks, video tapes, HDDs, credit cards, magnetic ID cards, cassette tapes, or other devices. They can also destroy devices like video players, televisions, CRT computer monitors. Remember not to place neodymium magnets close to these electronic devices.

So you are aware of why neodymium magnets are so dangerous, read the article titled How dangerous are strong neodymium magnets?.

Dhit sp. z o.o. logo

e-mail: bok@dhit.pl

tel: +48 888 99 98 98